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ABSTRACT

The "First Quarterly Report" ( GE Document No. 64SD4361) issued by the Spacecraft

Department of the General Electric Company describes the technical progress made in

the development of the Gravity Gradient Stabilization System for use on the Advanced

Technological Satellite (ATS). The report ,prepared under NASA Contract NAS 5-9042,

describes the systems analysis and system development undertaken from the inception

of the program, covering the period from June 29 to September 30,1964.

The report contains a preliminary definition of the Orbit Test Plan and the first docu-

mentation of the Orbit Test Simulation Exercise. Coordinate frames required to derive

the mathematical model are described. Results of the system analysis to date are also

detailed.

A discussion of the factors that influence the design concept selection of the Boom Sub-

system are presented and status of boom specifications and subcontr_.ctor work state-

ments are discussed. A delineation of all design details thus far definitized is presented.

Progress to date on the three critical interface areas (spacecraft, power and sensors) is

included, and testing activities conducted on the Boom Subsystem are detailed

Activities in the design of the Combination Passive Damper have been concerned with

establishing compatability between an eddy current damper and a hysteresis damper.

Twelve different concepts have been considered and studies are continuing to develop the

final approach.

The Attitude Sensor Subsystem has been selected to meet the NASA requirement for

monitoring vehicle attitude. ]___ f

vii/viii



SECTION1. INTRODUCTION

1o 1 Scope

This document is the first quarterly report issued since the inception of NASA Contract

5-9042 between the National Aeronautics and Space Administration and the Spacecraft

Department of the General Electric Company leading to the design of those components

and subsystems that make up the Advanced Technological Satellite Gravity Gradient

Stabilization System. As required by the contract, this is a Type II report intended to

inform scientific and technical personnel of the technical progress made toward the design

of the ATS Gravity Gradient Stabilization System during the reporting period from 29 June

to 30 September 1964.

1.2 Program Objectives

The Gravity Gradient Stabilization System is applied to three vehicles: on a 6000-nautical

miles, inclined orbit and two at synchronous-equatorial.

The objective of the experiment at 6000 nm is to verify a previously developed mathe-

matical model so that model can be employed for the design, and dynamic performance

predictions of gravity gradient stabilized vehicles at other altitudes and conditions. It

is also an objective to demonstrate compatibility between gravity gradient stabilization

systems and other equipments, such as communication, meteorological, etc.

The mathematical model will then be employed to predict performance of the two

synchronous experiments which will demonstrate compatibility of long life experiments

with gravity gradient stabilization at synchronous altitudes.

1-1/1-2



SECTION 2. TECHNICAL DISCUSSION

I

2.i Systems Analysis and Integration

2.I. 1 Orbit Test Plan

2.I. I. 1 Philosophy and Objectives

The ATS Orbit Test Plan is, fundamentally, a detailed statement of the operational plan

for accomplishing the basic objectives of the ATS Program. The total plan must pro-

vide sufficient flexibilityand time for the accomplishment of the several goals of ATS,

on a non-interference basis between experiments and in the order of descending priority

of experiments. The gravity gradient experimenter, in planning orbit tests, must keep

in mind the dual role of his responsbility: that of experimenter and that of prime space-

craft attitude control contractor for all 6000-mile orbit (MAGGE) and the 24-hour orbit

(SAGGE) flights. These responsibilities are best fulfilled, itis believed, by concen-

trating the major portion of gravity gradient experimentation on the MAGGE flight and

reserving the SAGGE flights for demonstrations of compatibility with mission require-

ments of long-life applications-type satellites. Gravity gradient experimentation, per se,

will therefore be minimized on SAGGE; only those experiments which require the unique

environment and parameters of a synchronous orbit will be planned.

The primary gravity gradient objective on MAGGE is the verification of the ATS Mathe-

matical Model. This is also considered to have the highest priority of all MAGGE ex-

periments. The MAGGE Orbit Test Plan must, therefore, contain those tests deemed

necessary and sufficient for the accomplishment of model verification. The tests described

in the next section are tentative but reflect preliminary thinking in terms of verification

requirements. The basic concept is to provide a series of tests which:

1. Isolate the major perturbative effects on the dynamic stability of gravity gradient
satellites

2. Provide parametric data for use in design of future gravity gradient satellites

3. Demonstrate operational feasibility of gravity gradient satellites with sophisticated
missions.

In the first category are tests designed to amplify (and thereby isolate) the effects of

torques due to solar pressure and magnetic field interactions, the effect of thermal,

and dynamic stress transients in the erecting torque and damping torque booms, and

the effect of orbit eccentricity. In the second category are tests design to vary the

satellite inertia ratios and magnitudes and compare alternative damper designs. In the

third category are inversion and capture tests and compatibility tests with meteorological

and communications satellite mission objectives. The ATS Mathematical Model will be

used to predict satellite performance throughout the entire range of orbit tests. Flight

data will then be used to verify and/or modify the Model. Flight Data will be reduced

by the GE-developed Attitude Determination Program; this program will also provide

"missing link" data between ground stations by interpolation of data obtained when the

satellite is in view of ground stations. Verification and/or modification of the ATS

Mathematical Model will be implemented through the GE-developed Data Correlation

Program. The Data Correlation program will be designed to compare predictions with

observations and identify the source of basic discrepancies.

2-1



2. i. i.2 Preliminary Definition of Tests

Table 2. I-I summarizes preliminary thinking as to the nature, sequence and duration

of gravity gradient orbital tests. The inclusion of tests which require the use of a

"Center of Pressure Relocation (CPR) Boom" and a "Three-Axis Magnetic Torquing

Coil" are especially tentative in nature since neither item of hardware has, as yet, re-

ceived approval for procurement. This does not lessen their importance to the Orbit

Test Plan, however, since they are fundamentally essential to current philosophies on

ATS Mathematical Model verification. Time indicated for execution of the orbit eccen-

tricity change is also tentative. Current studies on damper bottoming and boom dynamics,

under the influence of various excitation modes from the eccentricity thruster, must

be completed before the optimum maneuver time is established. Time for execution of

the eccentricity change is also dependent upon the initialvalue of eccentricity; if initial

eccentricity is excessive, the capabilities of the thruster may be used to circularize the

orbit rather than increase the eccentricity. The requirement for an initialperiod of

continuous sunlight imposes "launch-on-time" problems as discussed in paragraph 2.1.1o 4.

2.1o 1.3 "Crab" Angles Versus "Scissor" Angles

One of the earliest and most basic of the planned gravity gradient orbit test experiments

is the scissoring of the "X-booms." The nominal half-angle, measured in a plane con-

taining the local vertical and the tip masses of the primary stabilization booms, is 19

degrees. The "crab" angle (measured between the plane of the X-boom tip masses and

the orbital plane) is, nominally, 20. 5 degrees for the 19 degree X-boom half-angle. It

is this nominal crab angle which dictates the angular alignment of the plane of the X-boom

tip masses to the longitudinal axis of the basic cylindrical configuration of the space-

craft and ensures a nominal, normal orientation of the spacecraft's cylindrical axis

relative to the plane of the orbit. Since the crab angle is a function of the spacecraft's

inertia ratios, and since the spacecraft's inertia ratios are a function of the X-boom

half-angles, the scissoring experiment will change the nominal crab angle of the space-

craft relative to the plane of the orbit. It should be pointed out, however, that the

nominal crab angle is defined in terms of steady-state behavior. The scissoring experi-

ment constitutes a series of large angle displacements, at various X-boom half-angles,

over the entire range of scissor angles. The cross-coupling effects, during settling from

the large displacements to steady state, will induce yaw oscillations about the steady

state crab angle value as discussed and illustrated in paragraph 2.1.4.2. Electrical

power computations during scissor angle experiments should, therefore, consider the

transient case rather than the static case since current plans call for continuous dis-

turbances from steady state throughout the range of scissors experiments. Unless the

scissors experiment indicates an optimum X-boom half-angle other than 19 degrees,

19 degrees will be the nominal angle maintained throughout orbital life when scissor

angle tests are not being conducted. Table 2.1-2 presents the nominal, steady-state

crab angles versus X-boom half-angles and provides estimates of the total time, based

2-2



TABLE 2. 1-1. ORBIT TEST PLAN, MAGGE (PRELIMINARY)

TEST NO.

(MAGGE)

TEST OBJECTIVE TEST MECHANICS

Capture in "upright po_itton without Deploy X-boom (at 19 ° half-angle) and damper booms
deployment of clamper rod or uncagm_ at sulficieet rate to prevent tumble; bot_ dampers
of d_L_per. (Required as "set up" for caged.
Test No. I)

Establish the presence or al_ence of Observe telemetered attitude data from Lime of capture
me_surable structural damping with both dampers caged.

Determine "settling time" for No. I Uncage No. 1 damper, olmerve behavior down to

damper steady state.
(X-boom balI-aagle = 19 O)

Determine "settling time" for No. 2 Cage No. 1 damper, uncage No. 2 damper, observe steady
&tmper state behavior for 1 day; displace approximately 45 ° in

(X-boom half angle = 19°) itch or roll ot_erve behavior down to steady state
_-boom _ angle still at 19 °

Extend SP boom; observe change in steady state attitude
data; retract boom.

Determine effect of "large" CP/CM
offset

X-boom _ angle = 19 °)
Soisx incidence angle _ O)

Isolate effect of eclipse disturbances
due to change in thermal bending of
X-booms

(Xoboom _1I angle still 19 °)

Determine the effect of X-boom ha.if
angles on settling times and steady
state behavior for dampers No. 1 and
No. 2
(X-boom _ angles = 31 ° _5 ° 15 °
11 ° ) ' , ,

Enter eclipse period in steady state condition with No. 9
damper still uncaged; otmerve effect on steady state be*
havtor for 2 days; cage No. 2 damper, uncage No. 1
damper; v_serve effect on steady state behavior for addt-
tioral 2 days.

ALLOWED

TEST TIME

2 days

2 days

COMMENTS

If capture is inverted, a cont_Jtgency test plan is required.
Tentatively, the codi_isgency plan calls for inversion wite
the subtiming rockets two days after capture. Test No. 1
is performed in the inverted orisntatiml.

This test is contingent upon the success of capture without
damping.

5 days Estimated 3etflthg time = 3 days

6 days

8 days

(a) 1 day for observance in steady state prior to large angle

A_SoP_ cement; 5 days settling time as in Test No. 2
(b) 45 displacements are indicated in this and subsequent

tests only as order of magnitode. Displacements are
tentatively assumed to be provided via on-off commands
to subliming rockets.

4 days

(a) Estimated time for settling to new steady state conditions

3 days; 2 days observation time under new steady state
conditions; 3days to settle back to original steady s_te
mode after retraction of SP boom.

(b) A back-ap device for discarding the boom will be pro-
vided in the event of a retraction failure. Retraction

desirable since test should be repeated in al_mt 4 mv_s
under new solar incidence conditions.

(c) Preliminary estimate on boom length for MAGGE, assuming
a 1/2" dis rod = 30 feet.

Change the X-boom half angle from 19 ° to 31 ° with 9 days

damper No. 1 Still uncaged; olmerve steady state
behavior for 2 days; displace tu 45O/(see note on Test
NO. $); observe seitli_ time for 2Z_ays; caee No. 1

odamper, uncage No. 2 damper, displace to 4_ ° obaerve
setllisg time to steady state (5'days).

Repeat with opposite sequence ca_ (bmpers, at X-boom 9 days
angle of iS °.

Ditto at 15 ° and ii °. 18 days

An inexact period of t_.ne between the end of Test No. 4 and
the beginning of Test No. 5 will prevail doe to the uncer-
tainties associated with the taunch-on-time and design orbit
achievement problems. The exact time of eclipse encounter
can be established ovly after orbit tajectlat_ and orbit de-

termination. The time of eclipse encounter, however, should
be hissed "downstream" to mxsure completion of the first
4 tests and steady state attitude dynamics st time of first
eclipse encounter.

Determine the effect on steady state Return the X-boom bah angle to 19°; introduce k_own
conditions of "large" satellite di- orthogonai dipole moments (on the order of 3 times
pole moment, the estimated residual dipole momeets) along ortho-

gonal spacecraft axes by means of magnetic torquing
No. 1 damper coils. Observe change in steady state behavior(3 days
X-boom half angle = 19 ° each axis). Turn coils off, return to origtoal steady

state condltiol_s.

Repeat Test No. 4 with new solar (Same as Test No. 4)
incidence angle and 3-4 months
degradaticm o_ "painted" surfaces.

Isolate effect of orbit eccentricity Change e by 0.Ol (No. 1 damper uncaged)
Change e by additional O. O1 (No. 2 damper)
Repeat Tests No. 2 - No. 8

Demonstrate inversion ca_bility. Invert with subliming rockets and re-invert.

Determine effect of large inertia Retract X-booms to 50 feet
change and thermal rod bending
change

Getting steady state data on the new X-boom angle prior to
displacement eliminates the requirement for settling to steady
state with that damper prior to switching to the alternate
damper and displacing it to the 45° angle.

At end of test _equence (after compleflom of test wlth X-boom
half a_,le = 11 ), damper No. 2is caged and damper No. I
is uncaged.

9 days Only significant desige problem is eifminaUon of coil-produced
residual fielde after shut-down of torquing coils.

No Gravity Gradient Tests for about 60 days (MET. and COMM. Experimenis) - Preliminary evaluation of Gravity Gradient data to ensure successful completion of ai/prior teats. Wait for
appropriate orbital conditions for desired new solar incidence angle for repeat of Test No. 4. Total elapsed time to this point approximately 72 days.

Total elapsed time to this point approximately 360 days (240 days gravity-gradiset experiment time)

10

11

8 days

30 days
30 days

140 days

6 days

14 days

(Same as Test No. 4)

If initial orbit has an eccentricity on the order of 0. Ol or
greater, it may be desirable to attempt a decrease in e rather

than an increase. 140 days for repetition of Tests No. 2 -
No. 8 includes 60 days of no test between No. 7 and No. 8.

As an alternate inversion technique, boom retraction at a
sufficient rate to introduce a tumbling tendency can be
employed.

Rate of retracti(m must be slow enough to avoid the totro-
dectisn of tumbling torques.
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on Table 2.1-1, for which each half-angle will be maintained. Results of the scissors

experiment will be used to optimize the X-boom half-angle for SAGGE; no scissors

experiments are presently planned for SAGGE, however.

TABLE 2.1-2. "CRAB" ANGLE VERSUS "SCISSOR" ANGLE

NOo OF X-BOOM CRAB TEST % OF
DA YS HA LF-A NG LE A NG LE NO. TO TA L

27

9

9

9

9

164

9

9

9

9

97

360

19°

31°

25°

15°

Ii°

19°

31°

25°

15°

ii°

19°

0

-13.6 °

_ 9.7 °

+11 °

+25.5 °

0

-13.6 °

_ 9.7 °

+11 °

+25.5 °

0

0-5

6

6

6

6

7-9

9

9

9

9

9-11

7-1/2

2-1/2

2-1/2

2-1/2

2-1/2

45-1/2

2-1/2

2-1/2

2-1/2

2-1/2

27

i00

2.1.1.4 Eclipse Season Studies

As indicated in Table 2.1-1, current plans call for an initial 27 days of continuous sun-

light prior to the first encounter with the earth's shadow. This is for the purpose of

removing the extraneous effects of thermal "twang" from observations of settling times

using alternate dampers and various values of X-boom half-angles. (Thermal "twang"

is the term used to describe the sudden thermal bending which the booms will experience

in passing from a region of total eclipse into a region of continuous sunlight and vice

versa. ) It is also desirable to observe (via the TV camera) the effect of increasing

lengths of eclipse time on thermal bending, beginning with an eclipse time of near-zero.

Since the accomplishment of an initial period of continuous sunlight represents a constraint

on launch parameters, and since orbit injection time errors affect the feasibility of

accomplishing a pre-specified length of time for continuous sunlight, the General Electric

"Shadow History Program" was utilized to study the general characteristics of eclipse

seasons compatible with a planned launch date of October 15, 1966. Specified orbit

characteristics were as follows:

1. 6,000 nautical mile, circular orbit

2. 28-degree inclination to equator

3. Injection latitude = 26 degrees, South

4. Injection longitude = 96 degrees, East

5. Launch date = October 15, 1966 (day 288).
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Injection latitude and longitude were based on data in the Hughes Aircraft Corpora-

tion (HAC) "Advanced Technological Satellite Program Presentation" brochure, dated

June, 1964 (SSD 4277B). Results of these studies are presented in Figures 2. 1-1 and

2.1-2. Figure 2.1-1 indicates an extreme sensitivity to injection time errors. To

accomplish the desired 27 days continuous sunlight prior to first eclipse encounter,

Figure 2.1-1 indicates a local time (at the coordinates of the injection point) of 7.64

hours, P.M. (time 1938). An error of only 6 minutes injection time, however, repre-

sents a shift of almost two days in the time of first eclipse encounter. This represents

an extremely tight constraint on launch time and may be incompatible with other launch

time constraints. (The GE "Shadow History Program," it should be pointed out, assumes

a cylindrical rather than a conical earth shadow. This should not, however, significantly

affect the predicted trends. ) Figure 2.1-2 presents the entire eclipse season profile,

for approximately two years, after the assumed injection time of 7.64 hours, P.M.,

local time. The maximum shadow period per orbit is approximately 46.5 minutes with

time in shadow initially increasing at a r_te of slightly less than one minute per orbit.

2.1.2 Orbit Test Simulation Exercise

Due to the complexities of the operational gravity gradient orbit test plan and the neces-

sity of checking out the data processing and data correlation programs and the personnel

related functions associated with efficient handling of the quantities of data anticipated,

an orbit test simulation exercise has been proposed. Figure 2.1-3 illustrates, functionally,

the elements necessary to a complete orbit test simulation. At least one complete test,

including telemetry transmission of simulated data, is felt to be mandatory to a meaning-

full simulation exercise. The remainder of the tests could logically by-pass the telem-

etry portion of Figure 2.1-3 (as indicated by the dashed line on Figure 2.1-3) and serve

mainly as a checkout of the data correlation and Mathematical Model verification pro-

cedure. The following notes refer to the individual blocks of Figure 2.1-3.

NOTE NO. 1: Initial conditions will be based on requirements of the gravity gradient
orbit test plan (Table 2. 1-1). Nominal steady-state conditions, prior to the applica-
tion of perturbation commands, will be assumed. Inputs to the ATS Mathematical
Model and the Spacecraft Dynamics Simulation Program will generally be identical.
However, one test might be of the effect of slightly different initial conditions for
the two programs. This would simulate the inability, in the operational sense, to
exactly match initial conditions to those of the orbiting spacecraft.

NOTE NO. 2: The ATS Mathematical Model, presently under development, will be
iised to predict spacecraft behavior in orbit under the stimulus of planned orbital
tests. Verification of this model is one of the fundamental objectives of the ATS
program. Once verified, this model will be used as a design tool for future gravity
oriented satellites. The output of the ATS Mathematical Model program is recorded
on tape for subsequent correlation with the output of the Attitude Determination Pro-
gram.

NOTE NO. 3: The Spacecraft Dynamics Simulation Program is, essentially, a
"gimmicked" ATS Mathematical Model. It is used to generate an output that simu-
lates the actual behavior of the spacecraft in orbit. In tests using the telemetry
link, the "gimmicks" are omitted. The outputs of the Mathematical Model and the
Spacecraft Dynamics Simulation Program are then identical. Perfect correlation
should prevail except for errors introduced in the telemetry data reduction. This
provides a technique for the identification and subsequent recognition of telemetry-
induced errors in data correlation. Tests which omit the telemetry link (dashed
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line in Figure 2.1-3) introduce pre-selected variations in the Mathematical Model
to test the ability of the Data Correlation Program (and responsible technicians}
to detect those variations. As an example, the magnetic dipole in the ATS Mathe-
matical Model will be based on system measurements prior to launch. The "gimmick"
in the Spacecraft Dynamics Simulation Program, for one test, could be a re-orienta-
tion and possible change of magnitude of the magnetic dipole (to simulate a re-
orientation due to launch environment vibrations). The test of the Data Correlation
Program would then be the ability of the responsible technicians to recognize this
"gimmick" using the Data Correlation Program as a tool. The "gimmick" used in
any given test would remain unknown to the responsible technicians until after they
have made their conclusions based on analysis with the Data Correlation Program.

NOTE NO. 4: The Sensor Output Simulation Program must essentially work back-
wards through the equations for reduction of sensor output signals to spacecraft
attitude data. Since the outputs of some of the sensors (notably the earth sensor)
are temperature sensitive, simulated temperature data must be provided. Degrada-
tion data can also be provided to make the simulation even more realistic and check
the adequacy of the data system to recognize and utilize degraded sensor data.

NOTE NO. 5: The output of the Sensor Output Simulation Program is on tape in
7094 format; prior to use at the ground stations, it must be converted to PCM serial
format.

NOTE NO. 6: Simulated sensor output signals, in PCM serial format, are generated
on a tape playback unit and fed directly into a duplicate of the ATS telemetry trans-
mitter. (NOTE NO. 7)

NOTE NO. 8: Telemetered data is received at the ATS ground stations and trans-
mitted to the NASA/GSFC Operations Center.

NOTE NO. 9: Raw telemetry data, in 7094 format, is fed into the Attitude Determina-
tion Program to get spacecraft attitude and rate data. The Attitude Determination
Program also provides data interpolation between ground stations. To check out
this aspect of the Program, data from each of the ground stations (containing sufficient
information to be representative of a complete ground station pass) will be supplied.
"Missing link" data between stations will then be generated in a test of the sufficiency
and adequacy of this subroutine.

NOTE NO. 10: Current plans do not include the simulation of TV data transmission.
For use in the Data Correlation Program, hypothetical results of TV data reduction
will be generated. This will include partial time histories of boom thermal bending
phenomena.

NOTE NO. 11: Simulation of Star Field Reader data will be in the format to be
supplied by the Star Field Reader vendor so that simulated results can be fed into
the Data Correlation Program. Since the same data correlation program will be
used for both MAGGE and SAGGE flights, the Star Field Reader data capability must
be included even though the sensor will not fly on MAGGE.

NOTE NO. 12: The shipment of data to the ATS Operations Center at NASA/GSFC
is intended, primarily, to identify personnel related duties associated with the use
of that data and obtain an indication of the time-phasing requirements. As a part of
the simulation exercise, "emergency" situations could be simulated requiring de-
cisions in real time by the personnel manning the center.

NOTE NO. 13; The Data Correlation Program represents the "working tool" of
the Mathematical Model verification procedure. A team of trained technicians will
utilize this program to isolate and identify discrepancies between predictions of the
ATS Mathematical Model and actual spacecraft attitude data as determined from
the Attitude Determination Program. These technicians will, in a sense, be the
detectives that track down the errors and recommend the modifications in the ATS
Mathematical Model. It is the validity of this technique, and this program, that is
at the heart of the requirement for a detailed and sophisticated orbit test simulation
exercise. Since Mathematical Model verification is a fundamental MAGGE objective,
and since the ATS Data Correlation Program is being proposed as an essential part
of the verification procedure, a thorough checkout of this program, under realistic
operational conditions, seems mandatory.
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NOTE NO. 14: The recommendations of the Data Correlation Program technicians
are documented.

NOTE NO. 15: A comparison of the recommendations of the Data Correlation Pro-
gram technicians with the nature of the "gimmick" used in the Spacecraft Dynamics
Simulation Program (NOTE NO. 3) reveals a "go/no-go" confirmation of the data
processing procedures.

NOTE NO. 16: After establishing the nature and characteristics of errors due to
telemetry data processing, the telemetry link can be by-passed as indicated by the
dashed line of Figure 2.1-3.

2.1.3 Definition of Coordinate Systems

As directed by NASA/GSFC at the September 21 interface meeting with HAC, the co-

ordinate system illustrated in Figure 2.1-4 will be used in all subsequent ATS analytical

work. Section 2.1.5, this report, expands on this system and defines all coordinate

frames required for a complete description of the ATS Mathematical Model. The system

to be used for mass properties analysis replaces the Z axis with an L axis where L is

the distance "forward," in inches, from the spacecraft separation plane. The distance L,

then, designates station location. The "forward" end of the spacecraft is the end opposite

the separation plane. To convert from the X, Y, Z system to the X, Y,L system.

L = _CM Z

where _CM is the center of mass station location.

2.1.4 System Analysis

2.1.4.1 Capture Studies

A gravity gradient stabilized satellite is oriented by the torques produced by the gradient

in the gravitational field and augmented by orbital dynamics. These torques are propor-

tional to the differences in the moments of inertia of the satellite. Since moments of

inertia have an axis, but not a direction, the gravity gradient torques merely align the

axes of the satellite. As a consequence, the satellite is stable in both the "upside down"

and the "rightside up" position (in addition to the "forward" and "backward" position)°

Once stabilized, the satellite will remain ill the position it is in, and to achieve "rightside

up" capture, it is only necessary to insure that the position the vehicle stabilizes to

initially, is the correct one. The technique employed for 6000-mile orbit vehicle is to

correctly position the satellite at separation and reduce the separation rates to a very

small value by extending the gravity gradient rods.

The performance of the ATS gravity gradient system at capture can be best explained in

terms of total energy (kinetic plus potential) with reference to computer runs from a

three-axis rod extension computer program. For the vehicle to capture without tumbling,

the total energy content of the system at the completion of rod deployment must be less

tha_ the potential energy required to tumble. The potential energy is that associated with

gravity gradient and is calculated with respect to a coordinate system rotating at orbital

rate. The kinetic energy must, however, be calculated with respect to inertial space and,

as a consequence, the envelope of capture conditions is symmetrical with respect to
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orbital rate rather than zero rate. The ability to capture will therefore depend upon the

magnitude and direction of the separation rates. The condition most likely to cause tumble

is a backward pitch rate (pitch up).

To relate the conditions after rod deployment to those at separation, the rod lengtl_s,

initial moments of inertia, etc., must be known. In this preliminary analysis only

oscillations in the undamped mode with four rods extended to form an X will be considered.

The initial moments of inertia for the satellite body are 67.5 slug-ft 2, and the rod lengths

are 100 feet, extended at 2 ft/sec. A 3 _r separation tolerance of 1 deg/sec was assumed

about any axis except the roll axis, which was assumed to have a 1/4 deg/sec rate (the

axes are the Agena axes)° During the rod erection phase, the initial separation rate is

reduced by the laws of conservation of momentum, and kinetic energy is lost. Preliminary

calculations indicated that if the 1 deg,/sec separation rate was in the negative pitch

direction, the vehicle would tumble. To verify this conclusion, a computer run was made

with this condition, and the vehicle did tumble in pitch (Figure 2. 1-5). Yaw also "tumbled" ,

a condition which is normal and makes the "forward" capture of yaw virtually impossible.

If the rate were forward in the pitch direction, the total energy is less than that required

to tumble and the vehicle captures (Figure 2.1-6). The roll rate for both these runs was

1/4 deg/sec. Note that the time to erect the rod is short compared to the printout interval,

and the vehicle appears to "jump" to an initial position.

If the separation rate occurs on the yaw axis, the final yaw rate will be high (because of

the small moment of inertia growth), and the total energy content of the vehicle is greater

than that required to tumble. Figure 2.1-7, however, indicates that the vehicle did not

tumble, but is precessing about an axis slightly offset from the local vertical. It is

expected that the introduction of the damper boom into this situation will cause significant

oscillations, and tumble may occur.

To circumvent the tumble problem indicated in Figure 2. 1-5, two approaches are possible.

The first approach requires the Agena to be yawed 90 degrees such that the 1/4 deg/sec

roll rate appears on the orbital pitch axis. This case should capture whether the rate is

positive or negative, and Figures 2.1-8 aJ_d 2.1-9 indicate that capture does occur (note

that the growth of the roll amplitude is accompaa_ied by a decrease in pitch amplitude as

would be expected from the conservation of energy law). To ensure that the separation

rate uncertainties do not interfere with capture, a 1 deg/sec pitch rate (now an orbital

roll rate) was added and the vehicle still captured (Figure 2. 1-101 Placing the initial

rate on yaw also produced a capture situation (Figure 2.1-11).

The alternative to yawing the Agena is to provide the vehicle with a nominal 1 deg/sec

pitch separation rate and a pitch position bias. With a nominal variation ill separation of

approximately 1 deg/sec, the final pitch rate would be between 0 and 2 deg/sec depending

upon the direction of the 1 deg/sec uncertainty.

Figures 2.1- 12 and 2.1-13 indicate thatcapture did occur with the rate bias even without

the pitch position bias. Figure 2.1-14 shows the pitch bias rate with the separation rate

about yaw, and Figure 2. 1-15 shows a run with the pitch rate zero and the yaw rate 1 deg/

sec. Both conditions captured. With a pitch position bias on the booster, the satellite

would "exactly" capture with no attitude or rate error. As a consequence the effect of
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rate variations is symmetrical (i. e., a -1 deg/sec rate and a +1 deg/sec rate produce the
identical performancewith a 180degreephaseshift). From the foregoing runs andfrom
energyconsiderations, theplacementof 1deg/sec (approximately)positive pitch rate
(pitch down)anda negativepitch position bias on the vehicle will ensure capturein the
undampedmode. This techniqueappearsto be the simplest to implementandis recommend-
ed for this reason. The exactvalueof the rate andposition at separationwill be specified
whenthe initial andfinal momentsof inertia are finalized. From Figure 2.1-12_a
tentative valueof -15 degreeswas selected.

2.1.4.2 Transient Performance Studies

During the flight of the ATS Gravity Gradient System tests will be performed to determine

the damping characteristics of the vehicle with several values of half angle between the X

rods. To determine the transient characteristics, as well as estimate the time to reach

steady state, a series of computer runs was made using the GAPS III, three-axis computer

program. The results of these runs are discussed in the following section.

The transient performances of the ATS Gravity Gradient configurations were evaluated

using the GAPS I/l, three-axis computer program° The five configurations selected were

those with a 31, 25, 19, 15, and 11 degree angle between the main rods of the satellite.

Each of the configurations has 100-foot rod lengths with 2.5 pound tip masses and a

secondary boom of length 45 feet (90 feet tip to tip) with 1.91 pound tip masses. To

provide a basis for performance comparision, the vehicle was assumed to be stopped in

in space (inertial stop) with no external disturbance torques applied. These conditions

result in a smooth transient which permits accurate calculation of the time constants.

Figures 2. 1-16 thru 2.1-20 show the results of the computer runs. The initial pitch and

roll angles were zero, and the initial yaw angle was 180 degrees. Experience has

indicated that the vehicle will yaw around when the pitch and roll amplitudes are large.

By starting at 180 degrees, the final yaw oscillations were about zero, which are more

convenient to plot than oscillations about 180 degrees.

With an initial pitch rate of zero, the peak of the first oscillation will be negative, with

an amplitude dependent upon the configuration. The 31-degree configuration has the

largest peak (60 degrees) and the 11 degree-configuration has the smallest (38 degrees).

To include the effect of the initial amplitude in the calculation of time to reach steady state,

a time constant is computed for the pitch axis based upon this peak. The time constants

are expressed in orbits to damp and are listed in Table 2.1-3. Time constants cannot be

defined for the roll and yaw axes since the oscillations in these axes are induced by the

pitch oscillations. Their characteristics can be observed from the runs, however.

A reference line has been included in the yaw axis plots to indicate where the vehicle

stabilizes, since it is biased from zero except for the 19-degree configuration.

At the end of 80 hours, only the ll-degree configuration shows an appreciable oscillation

amplitude. This can be attributed to the proximity of the damping axis (the axis about

which the damper rotates) to the orbital pitch axis (the axis normal to the orbit plane. )

If the damping axis and the pitch axis were coincident, pitch motion would decouple from

roll and yaw motion, and small amplitude roll and yaw oscillations would not damp.
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Because of the low yaw moment of inertia of the X-rods (on the 11 degree-configuration),

the secondary boom causes the damping axis to be 20.6 degrees closer to the pitch axis than

the 19-degree configuration. There is still cross coupling, but roll and yaw damp slowly.

Table 2.1-3 and Figures 2.1-16 thru 2.1-20 contain additional information available from

the GAPS III computer program. The boom motion associated with these capture runs

is plotted on the figures for all except the 25-degree configuration, and the maximum

amplitudes are listed in Table 2.1-3. This table also contains the peak cocking torque

the damper experiences during the transient. This is the torque normal to both the rod

axis and the damping axis. During the capture phase of the flight, the cocking torque may

easily exceed this value.

TABLE 2.1-3. VEHICLE DAMPING SUMMARY

Configuration Half Angle

(degrees)

31

25

19

15

ii

Time Constant

(orbits)

2.43

2.08

2.22

i. 47

I. 80

Boom Oscillation

(degrees)

36.5

42.3

38.8

35.3

38o 5

Cocking Torque
(dyne cm}

612

673

703

701

556

2. I.4.3 Magnetic Torque Studies of 6000-mile Orbit

As a part of the ATS gravity gradient experiment, ithas been proposed that the vehicle be

provided with a controllable magnetic dipole. This dipole will be used to determine the

effect on the attitude control of the vehicle of interaction between the earth's magnetic

field, and a dipole of known orientation and strength. Since the vehicle will oscillate due

to orbit eccentricity (thermal bending, solar torque, etc. ) the error due to the controll-

able dipole must induce oscillations which are large enough to be clearly distinguishable

from the normal oscillations. As a consequence, a dipole moment of 20,000 pole-cm

(2°51x10 -4 weber-m) was selected.

A magnetic dipole of this size will cause a pitch error of from four to six degrees and a

roll error of from two to eight degrees, depending upon vehicle configuration and magnetic

dipole orientation. The dipole is, however, strong enough to orient the satellite in yaw,

and the vehicle will nominally point to the magnetic field. To avoid this, without reducing

the pitch and roll errors to below sensor threshold level, the dipole should be placed along

the yaw axis. A measurable roll and pitch bias will be obtained with an oscillation on the

pitch axis due to the rotation of the earth. Since there is some evidence that a yaw bias

interferes with the damping, the above technique is recommended. If the yaw performance

is to be studied, a small dipole (approximately 400 pole-cm) could be placed on either the

roll or pitch axes.

The performance of the vehicle was determined using the GAPS III, three-axis computer

program. This program contains a magnetic subroutine which accurately simulates the

k_1own magnetic field to within one degree in direction and one percent in magnitude. A
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series of computer runs were made with the dipole component of 20,000 pole-cm located

on each of the principal axes, and the response in the pitch, roll and yaw axes was

determined. S_nce the effect of the dipole depends upon vehicle configuration, the nominal

6000-mile orbit configuration (19 degrees half angle between the X-rods), as well as the

extreme configurations (11 degrees and 31 degrees half angle) were considered. The rod

lengths are 100 feet with tip weights ef 2.5 pounds and the secondary rod has a 45-foot rod

(90 feet tip to tip) with a 1.91-pound tip weight. With these physical characteristics, the

31-degree and ll-degree configurations will have nominal yaw biases of approximately

-13.6 and 26 degrees respectively. The orbit inclination is 28 degrees.

Figure 2. 1-21 shows the response of the nominal configuration with the dipole located on

the pitch axis. In this position, there is no direct effect on pitch (8u)_ and the oscillations

on this axis are the result of cross coupling of the roll (8r) oscillations and the yaw (ey)
bias. The effect on yaw is quite severe with the satellite oscillating at ten degrees half

amplitude about a twenty-degree bias (all vertical scales are in degrees)•

Figure 2. 1-22 shows the response of the configuration when the dipole is on the roll axis.

The pitch amplitude is approximately the same as in Figure 2.1.21 but the characteristics of

the motion have changed. The roll error has both increased in magnitude and changed

characteristics. The yaw error has significantly increased, the bias error being 50

degrees with a 20-degree dynamic oscillation error. The cross coupling between the axes

is very evident when the pitch and yaw motions are compared, and it is evident to a lesser

extent when pitch and roll are compared•

With the dipole located on the yaw axis (Figure 2.1-23), there is no bias on the yaw axis,

and the only oscillations are those due to pitch coupling• Roll exhibits a relatively

smooth bias_ and the oscillations appearing on the pitch axis are probably due to the

rotation of the earth (note the nearly 24-hour cycle).

Figures 2.1-24 thru 2.1-29 contain the same series of runs with the 31 degree and 11

degree rod angle configurations in that order. The horizontal axis on the yaw scale marks

the position about which the vehicle would settle if undisturbed since it is not equal to zero.

Comparing all the runs, it is evident that those runs which have the dipole located on the

same axis exhibit the same characteristics of motion but with different amplitudes. The

largest errors occur when the dipole is on the roll axis, and the least errors occur when

the dipole is on the yaw axis. The errors induced when the dipole is on the pitch axis will

be the same if the dipole is along the positive or negative pitch axis, since the maximum

gravity gradient restoring torque in yaw is less than the maximum magnetic torque, and

the vehicle will align itself to the nagnetic field. Figures 2.1-21 thru 2.1-28 illustrate

that alignment to the magnetic field does occur. Figures 2.1-21, 2.1-24 and 2.1-27 all

have the same yaw bias even though the configurations are different and have different

undisturbed yaw positions. The same is true of Figures 2.1-22_ 2.1-25 and 2. 1-28•

Comparing configurations, the 31-degree configuration has the worst characteristics and

the largest oscillation amplitudes. The 11 degree and 19 degree configurations are very

similar with small pitch and roll oscillations• Some of the runs indicate the existence of

a transient although the vehicle should be in steady state, and it is probable that the biases

associated with the axes have interfered with the normal damping mode.
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2.1.4. 4 Magnetic Torque Studies of 24-Hour Orbit

The effect of a magnetic dipole on the performance of the 6000-mile orbit configuration

was discussed in paragraph 2.1.4. 3. The effect of a dipole on the 24-hour orbit configuration

must also be considered, particularly since the presence of the empty rocket motor case

(from the orbit circularization maneuver) may cause a large dipole moment. The

magnitudes of the magnetic errors for 24-hour orbit configuration should be no larger than

those for 6000-mile orbit configuration (with the same magnetic moment) because the

gravity gradient and magnetic torques decrease as the inverse cube of the orbit radius.

However, the magnetic field is stationary with respect to the satellite, and the character-

istics of the oscillations will be different at synchronous altitude than at intermediate

altitudes. To determine these characteristics and pinpoint the exact attitude errors, a

series of computer runs was made. The results of these runs are discussed in the

following sections.

Any magnetic moment within the vehicle will produce satellite attitude errors. If these

errors are small, their amplitudes are approximately linear with dipole strength. The

magnitude of the magnetic moment which results in small errors is a function of the axes

on which the dipole is located. With the magnet on the yaw axis, the errors are approxi-

mately linear up to a dipole strength of 40, 000 pole-cm. Linearity is maintained up to

a 20,000 pole-cm if the dipole is on the pitch axis, and to less than 10,000 pole-cm if

the magnet is on the roll axis. The linearity functions are given in Table 2. 1-4 for the

24-hour orbit configuration.

Since the dipole orientation is arbitrary, good pointing accuracy can be achieved only if

the magnetic moment of the satellite is kept small. If the yaw error is limited to 3

degrees (worst case), the dipole moment should be 1000 pole-cm or less.

The performance of the vehicle was determined using the GAPS HI, three-axis computer

program. A series of computer runs was made with the 24-hour orbit configuration

and three different values of magnetic dipole. The 24-hour orbit configuration has four

rods, each of which is 100 feet long and has a tip weight of 10 pounds. The rods form an

X with a 19 degree half angle between them. In addition, there is a secondary boom

composed of two rods each 45 feet long with a 7.5 pound tip weight. The three values of

magnetic strength selected were 10,000, 20, 000 and 40,000 pole-cm. It is expected that

the rocket motor case would have a dipole moment of this magnitude. Since the satellite

response is dependent on the orientation of the dipole within the satellite, as well as its

magnitude, computer runs were made with the magnetic moment along the yaw, pitch and

roll axes. The results of these runs are shown in Figures 2.1-3 to 2.1-39.

Figures 2.1-30, 2.1-31 and 2. 1-32 show the performance of the 24-hour orbit configura-

tion vehicle with the dipoles located on the vehidle yaw axes. The magnet is almost at

right angles to the magnetic field, and produces a roll torque which is essentially constant.

The primary effect of this torque is to cause a roll bias with resulting pitch and yaw

oscillations. Comparing the roll biases in Figures 2.1-30, 2.1-31 and 2. 1-32 it is

evident that the bias is linear with magnet strength. The 40,000 pole-cm magnet yields

a 4 degree roll bias, the 20, 000 pole-cm magnet yields a 2 degree bias and the 10,000

pole-cm magnet yields a 1 degree bias. The small amplitude oscillations which appear on

the roll axis give the same appearance of linearity.
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Analysis of the pitch and roll motions from these three figures indicates that the errors on

these axes are also linear with magnet strength. Table 2.1-4 summarizes the amplitude

of the errors (bias and oscillation) for these three computer runs as well as the remainder

oi the runs°

Figures 2.1-33, 2o 1-34 and 2.1-35 are the same runs but with the magnet on the pitch

axis° The behavior is approximately linear for all axes for magnet strengths of 20,000

pole-cm as less, but the character of the motion is altered when the dipole is 40,000

pole-cm, and the linearity is no longer maintained. The oscillations of the pitch axes are

probably due to cross coupling since there is little torque on this axis.

Figures 2.1-36, 2° 1-37 and 2.1-38 are computer runs with the magnet on the roll axis°

This is the worst position for the magnet since it is almost at right angles to the magnetic

field and produces a large torque on the yaw axis. The yaw restoring torque (due to

gravity gradient) is only three percent of the roll restoring torque and the yaw bias is very

large. Figures 2.1-37 and 2.1-38 have almost the same yaw bias (90 degrees) and it

appears that the dipole has completely overpowered the vehicle and aligned it with the

magnetic field. As a consequence the system oscillations are completely non-linear and

the damping has been significantly altered.

Analysis of the figures, and Table 2.1-4 indicates that if good pointing accuracy is to be

achieved, the residual magnetic moment of the vehicle must be less than i0,000 pole-cm.

The tolerable value would depend upon the orientation of the dipole, but if itis assumed

to be randomly oriented,

MAGNET ON YAW AXIS

Bias
Oscillation

Bias
Oscillation

Pitch Error (Deg.)

Roll Error (Deg.)

Yaw Error (Deg.) Bias
Oscillation

IMAGNET ON PITCH AXIS

Bias
Oscillation

Bias
Oscillation

i000 pole-cm appears to be a realistic value.

kTTITUDE ERRORS

Magnet Strength
(pole-cm)

Pitch Error (Deg.)

Roll Error (Deg.)

Yaw Error (Deg.) Bias
Oscillation

i0,000 20,000 40,000

.2

.5

1.0

0
1

TABLE 2.1-4.

.15

.15

0
1

.5
6.5

.4
1.0

2.0
m-

.3

.3

.2
1.6

.2
2.0

05
12.5

.7
1.9

4.0

.5

.5

.2
1.8

.9
3.3

1
15

Linearity Factor
Deg/pole-cm

2.10 -5

5. i0-_

i. 10-4

1.5.10 -5

1.5. i0-_

1.10 -5
1.10--

1.10 -5
1o 10 -'}

5.10 -5
6.5.10 -4
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TABLE 2.1-3. ATTITUDE ERRORS (cont'd)

MAGNET ON ROLL AXIS

Pitch Error (Deg.)

Roll Error (Deg.)

Yaw Error (Deg.)

Bias
Oscillation

Bias
Oscillation

i0,000

o8
.15

0

.6

Bias 32
Oscillation 6.0

Magnet Strength
(pole-cm)

20,000 40,000

.8 2°2

.20 .2

.5 2.8
1.5 4.6

95 90

5 12

Linearity

Factor

Deg/pole-cm

m=

mm

==

2. i. 4.5 Crab Angles of the 6000-Mile Orbit Configuration

The ATS MAGGE vehicle is designed to fly at zero attitude error for the nominal half

angle between the X rods of 19 degrees. Part of the gravity gradient experimental flight,

however, consists of determining the performance at different X rod half angles. Changing

this angle will rotate the axes of principal moments of inertia and cause the satellite to

fly at an angle out of the orbit plane (i.eo, a yaw rotation about the local vertical), or to

"crab". The angle of the crab is a function of the rod half angle.

The configuration in this program is assumed to have all the rods radiating from the axis

of the cylinder. Recent changes to the proposed configuration have, however, shifted the

position of the rods so that they do not pass through the center. This will cause a small

change in the computed crab angle. The new crab angles will be evaluated after the

actual rod position is finalized.

The nominal half angle between the X-rods for the 6000-mile orbit configuration is 19

degrees. This half angle has been selected to provide a zero attitude error while the

vehicle is in orbit. However, the value of the half angle was determined from a

simplified analytical model of the gravity gradient configuration, and the presence of the

satellite body and the outboard position of the damping boom cause a slight shift in the

location of the principal axes of inertia. The attached figure shows the crab angles as

determined from the GAPS Ill computer program, and indicates that the attitude error at

19 degrees is not zero but -0.5 degrees. (The rod half angle to give zero crab angle is

approximately 18.8 degrees. ) A negative angle means that the "plane" of the X rods

is closer to the orbit plane than itis when the X rod half angle is 19 degrees. Hence,

the angle between the velocity vector and the X rod plane (measured around the local

vertical) is now 20 degrees rather than 20.5 degrees. Similarly a positive sign means

that the X rod plane is farther away from the orbit plane than in its nominal position. In

the limit, ifthe X rods were coincident, and there were no difference between the pitch

and roll moments of inertia, the satellite would have a 42 degree error, and the damping

boom would lie along the velocity vector. The crab angle for other values of rod half angle

over the region to be used in orbit are given in Figure 2.1-39.
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2.1.4.6 Bottoming of the Damper Due to Thermal Bending

The purpose of this study was to determine if the magnetic damper will bottom, when the

Advanced Technological Satellite is leaving shadow and entering sunlight, due to thermal

expansion of the rods.

A second order differential equation has been derived to express the relationship between

the absolute magnetic damper clearance as an analytical function of thermal expansion of

the rods.

Given delta temperature of the rods as a function of time, At = f (t), radius of curvature

can be expressed as a function of time, R = f(t), see Equation (1).

2 r (1)
R - # (At)

= o 5 inchWhere:r 3.9x 10-v°F
5t U F

Knowing: R=f (t), X 2 can be expressed as a function of time.

See Equation (2)

X 2 =R(1- Cos 0)

Where: S = 45 feet (See Figure 2.1-40)
s --S/R

(2)

T
l

Figure 2.1-40. X 2 as a Function of Time

X 2 vs t is plotted in Figure 2.1-41.

Knowing: X_ = f (t) an analytical function for X 2 can be derived by using three
exponentials2

X2 = Ko _ Kle'dl t _K2e-d2t _K3e-d3t (3)

Where d 2 --2d 1

d 3 = 3d 1
y = e-dl_t

Ko =KI+K2 +K3

This analytical function fits the coordinates in Figure 2.1-42,
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The solution to, Equation (4), the second order differential equation can now be solved by

using a La Place Transformation.
so

°° b Xl k -m2 X 2
X1 + _m_ + m I +m 2 Xl - m I +m 2

b = 15000 dynes/cm/sec
k 3000 dynes/inch and 15000 dynes/inch
ml= 3/32.2 Ibso
m2= 3° 8/32.2 Ibso

Where

In the La Place Transformation the solution becomes

Xl + BXl + CX1 = K1 + K_ e'd't + K2 e-d2t + K3e-det

(4)

(5)

Figure 2°1-43 represents two graphs of X 1 = f(t)for t spring constantsof 5000 dynes/inch

and 15000 dynes/inch, respectively.

The magnetic damper has a clearance of approximately 5/100 inch, and from Figure 2.1-43,

the damper willnot bottom. The maximum values of X 1 for spring constants of 5000 dynes/

inch and 20000 dynes/inch are °0175 inch and o0088 inch, respectively.

2. 1.5 ATS Mathematical Model Coordinate Frames

The various coordinate frames that will be needed for the digital computer simulation

of the attitude dynamic of the Advanced Technology Satellite are described here, insofar as

is possible at present. The nomenclature of offsets and angular rotations is also assigned.

The configuration used is sufficiently general to cover all design alternatives presently
foreseen.

Additional coordinate frames needed for dynamical, thermal and structural analyses

must be related to the systems described herein when the results of the analyses are

incorporated into the simulation.

Each reference frame is described by a right-handed system of unit vectors. The positive

direction of each axis, and the location of the origin of each reference frame are stated.

Each frame is derived from the previous one by a translation of the origin, if applicable,

followed by one or more angular rotations. The order of these rotations is specified,

and the elements of the rotational transformation matrix are given.

All angular coordinates will be expressed as Greek letters with subscripts. Greek

letters will not otherwise be used.

2.1.5.1 Inertial Reference Frame

The inertial reference frame is described by the triad X I YI ZI' with the origin at the

geocenter. This frame is illustrated in Figure 2. 1-44.

The positive X I axis is along the mean vernal equinox of date, and points toward the

first point of Aries. The positive ZI axis points to the north geographic pole. The positive

YI axis forms a right-handed system.
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ZI

I
YI

GE 0

PLANE

(TO HELIOCENTER
AT VERNAL EQUINOX)

Figure 2. 1-44. Inertial Reference Frame

It is convenient to specify a unit vector, S, directed from the heliocenter to the geocenter.

S is expressed in terms of its components (direction cosines) in the inertial frame,

S = XIcosu E +YisinPECOSI E+ Z IsinpE sinIE,

where IE is 23.45 degrees, the angle between the ecliptic and equatorial planes, and

P E is the instantaneous celestial longitude of the earth. PE is calculated from the

following equations.

Given the time, t, in mean solar seconds from Oh U.T. of the day of interest (calendar

day n), find the time, t', in mean solar days and fractions thereof, measured from Oh U. T.

of January 0 of the year of interest,

t
t' = n + 86.400 "

The celestial longitude of the earth on January 0 is an input constant determined from

PE0 = _S0 - 180°'

where US0 "s the celestial longitude of the sun on January 0, as found in the nautical

ephemeris. The eccentric anomaly, EE0 , of the earth on January 0 is found from

tan (_-Q-) = _ -eE+e-EEtan (pE02_aEp) '

where

e E = 0.01672 (1965)

is the eccentricity of the earth's orbit, and

PEP = 102"335° (1965)

is the celestial longitude of the earth at its perihelion position. The eccentric anomaly,

EE, of the earth at time, t', is found from
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E E - eE sinE E = w Et' + EE0 - eEsinEE0 ,

where the angles are in radians, and w E = 0. 0172028 radians per mean solar day.

isThe celestial longitude of the earth, UE, computed from

/PE -_EP\ . l+_-_E /EE \

tan k 2 ) =V_l_--_ tan _--2--)

2.1.5.2 Geographic Reference Frame

|The geographic reference frame is described by the triad X G YG ZG' with the origin

at the geocenter. This frame is illustrated in Figure 2.1-45.

NORTH POLE

GREENWICH

YG

XG EQUATOR_L PLANE

Figure 2.1-45. Geographic Reference Frame

The positive X G axis lies in the intersection of the Greenwich meridian and the equatorial

plane. The positive Z G axis points to the north geographic pole, and the YG axis forms

a right-handed system.

The angular coordinates of a vector in this system are longitude, )., measured positive

eastward from Greenwich, and geocentric latitude, ¢'.

The geocentric latitude is related to the geodetic latitude, ¢, by the relation,

tan ¢' = (1-e 2) tan¢,

where

e 2 = 0.006723,

and e is the eccentricity of the ellipsoidal earth.

The Greenwich hour angle is designated as GHA. The American Ephemeris lists GHA

for 0 hours Universal Time for every day of the year. To avoid a table look-up, GHA

is computed as follows. Let GHA 0 denote GHA at Oh U.T. on January 0 of the year of
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interest. GHA 0 is obtained from the ephemeris and expressed in sidereal hours and

decimal fractions thereof. Then GHA in degrees is computed from

GHA = 15 GilA 0 +0.98565n+ 0.0041781t,

where n is the calendar day of interest, and t is the time in mean solar seconds since

0h U.T. of day n.

The geographic reference frame is obtained from the inertial reference frame by a

rotation through the angle GHA about the ZI axis. When GHA is zero, X G points along

XI, etc.

The matrix of the transformation from the inertial frame to the geographic frame is

[B1]'

rxo r:, l
[B1}/',/

L zGJ L z I J

i Bi11 = cos GHA ,
Bll 2 = sinGHA ,

i BI21 = - sin GHA ,

BI22 = cos GHA ,

B133 = l,

Bll 3 = BI23 = BI31 = B132 = 0.

i 2. I. 5.3 Orbital Reference Frame

The orbital reference frame is described by the triad RPQ, with the origin at the geo-

center. This frame is illustrated in Figure 2. 1-46.

The positive R axis points to the satellite, and is therefore along the local vertical at

the satellite. The positive Q axis points along the orbital angular velocity vector. The

positive P axis makes a right-handed system. If the orbit is circular, the positive P

axis is along the satellite velocity vector.

The right ascension of the ascending node is _, the orbital inclination is i, and the orbital

angular position relative to the ascending node is Y. When all of these angles are zero,

R lies along XI, P lies along YI' and Q lies along Z I. The orbital frame is obtained

from the inertial frame by a rotation _ about ZI, followed by a rotation i about the

line of nodes, followed by a rotation Y about W.
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Figure 2.1-46. Orbital Reference Frame

The matrix of the transformation from the inertial frame to the orbital frame is

[1 [xi]
The elements of the [B2] matrix are

B211 = cos _ cos Y - sin_ cosisin Y,

B212 = sin_ cos Y + cos _ cosisinY,

B213 = sinisin _,

B221 = - cos _ sinY - sin_ cosicos Y,

B222 = - sin_ sinY + cos _ cos icos Y,

B223 = sinicos Y,

B231 = sin_ sin i,

B232 = - cos _ sini,

B233 = cos i.

2.1.5.4 Satellite Body Reference Frame

The satellite body reference frame is described by the triad X 1 Y1 Z
at a prescribed point, 0.

B 2 ,

1' with the origin

This point is on the axis of the cylindrical body, at the nominal

I

1

i

1
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point to be specified later.
of tht_c,mt,_rof mast_of th
shownin Figure 2.1-48.

Q (translated)

Zl \ eR I

ey

Y1

R (translated) /eRy

X 1

center of mass, or in the plane of the interface with the booster, or other convenient

This frame is illustrated in Figure 2. 1-47. The coordinates

of the center of mass of the main body, in this frame, are XMM , YMM' and ZMM , as

Figure 2. 1-47.

DISPLACED Y1

P (translated)

Satellite Body Reference Frame

The X 1 axis is along the nominal local vertical, and is positive upward. The Z 1 axis

is the axis of the cylindrical body, and is positive in the direction away from the end

where the solar panels are located. The positive Y1 axis forms a right-handed system.

For zero attitude errors and zero yaw bias, X 1 is parallel to R, Y1 is parallel to P,

and Z 1 is parallel to Q. The satellite frame is obtained from the orbital frame by a

translation without rotation from the geocenter to the satellite frame origin, followed by

three rotations. The first is a rotation Op about the translated Q axis, the second is a

rotation eR about the displaced Y1 axis, and the third is a rotation ey about the X 1 axis.

The matrix of the rotational transformation from the orbital frame to the satellite body

frame is [Eli ,

ixl ,,[
Z 1 Q .
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The elements of the [Eli matrix are

Ell 1 = cos {}p cos {}R'

Ell 2 = sin0pCOS _R,

Ell 3 = -sinOR,

El21 = cos Opsin ORSinOy- sin{}pCOS Oy,

El22 = sinOpsinO R sin Oy+COSOpCOS 0y,

El23 = cos 6RSinOy,

El31 = cos {}psinO Rcos 6y+SinOpSinOy,

El32 = sinOpsinO R cos Oy-COS OpSinOy,

El33 = cos OR cos ey.

2.1.5.5 Secondary Boom Reference Frame

The secondary boom reference frame is described by the triad X S YS ZS' and illus-

trated in Figure 2.1-48. The origin of this frame is at the center of the hinge axis, and

has the coordinates XLS , YLS' and ZLS , relative to 0.

The rotations a S and _S align the hinge axis, ZS, as desired. The rotation _SN about

the hinge axis aligns the secondary body in the position in which the restoring torque of

the suspension is zero. The transverse axes X$ and YS form a right-handed system with

Z S. When all three Euler angles are zero, X S is parallel to Xl, etc.

The secondary boom frame is obtained from the satellite body frame by a translation

without rotation from 0 to the center of the hinge axis, followed by three rotations. The

first is a rotation a_ about the translated X 1 axis, the second is a rotation _S about the

displaced YS axis, and the third is a rotation 7SN auout u,_ hL,_c axlz, Z_.

The matrix of the rotational transformation from the satellite body frame to the secondary

boom frame is [E2] ,

[xsjix]:
Z S Z 1

The elements of the [E2] matrix are

E211 = cos 8 S cos 7SN ,

E212 = sin_ sinBScOsTsN+cosa SsinTSN,

E213 = - cosa Ssin 8 ScosTSN+sinc_ Ssin_SN,

E221 = -cos _sSinTSN,

E222 = - sina Ssin RS sin_sN +c°sa ScosTSN,
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E223 = cos tv S sin flS sin _SN + sin t_S cOsTSN,

E231 = sin _S'

E232 = -sina Scos flS'

E233 = cosa Scos flS"

The matrix of the rotational transformation from the orbital frame to the secondary boom

frame is [E3] ,

Ys =
Z

The elements of the IE3] matrix are found from the matrix equation,

The coordinates of the center of mass of the secondary boom assembly are XSM , YSM'

and ZSM , in the secondary boom frame, as shown in Figure 2.1-49.

2.1.5.6 Gravity Gradient Rod Reference Frames (Rods Attached to Main Body)

The reference frame of the Ith rod attached to the satellite body is described by the

triad XRI YRI ZRI' and is illustrated in Figure 2.1-48. The origin of this frame is at

the center of the base of the rod, and has the coordinates XLRI, YLRI' and ZLRI,

relative to 0.

The XRI axis lies along the rod axis (when it is straight), and is positive outward from

the satellite body. The positive YRI axis is directed from the center of the rod radially

outward along the bisector of the overlap (in the transverse plane at the base of the rod).

The positive ZRI axis forms a right-handed system.

The

5 RI

XRI

rotations ry RI and 7RI align the (straight) rod axis, XRI , as desired. The rotation

aligns the YRI axis along the overlap bisector. When all three Euler angles are zero,

is parallel to X1, etc.

The Ith rod frame is obtained from the satellite body frame by a translation without rota-

tion from 0 to the center of the base of the rod, followed by three rotations. The first

is a rotation _RI about the translated X 1 axis, the second is a rotation _ RI about the

displaced ZRI axis, and the third is a rotation 5RI about the XRI axis.

The matrix of the rotational transformation from the satellite body frame to the Ith rod

frame is [RII ,

Ixi, ix1YRI| = [RI] Y1

ZRIJ Z I .
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The elements

, RI11

of the [RI] matrix are

= COS _RI'

= cos _RI sin _ RI'

RI13 = sin r_Ri sin 7RI,

RI21 = -sin ?RI cos 6RI ,

RI22 = cos_RiCOSTRICOS 6Ri-sin_Risin 6RI ,

RI23 =

RI31 =

RI32 =

RI33 =

sin aRi cos _RI cos 5RI + cos _RI sin 6RI ,

sin _RI sin 5RI ,

-cos _RI cos TRI sin 5RI - sin _RI cos 6RI ,

-sin _RI cos _RI sin 6RI + cos _RI cos 6RI.

The reference frames, translations, angles, and matrix elements for all four rods are

similar. The equations are obtained by letting I take the values 1, 2, 3, and 4.

2.1.5.7 Gravity Gradient Rod Reference Frames (Rods Attached to Secondary Body)

The reference frame of the Jth rod attached to the secondary body is described by the

triad XSR J YSRJ ZSRJ, and is illustrated in Figure 2. 1-49. The origin of this frame is

at the center of the base of the rod, and has the coordinates XLSRJ , YLSRJ, and ZLSRJ ,

in the secondary boom frame and relative to the origin of that frame.

The XSR J axis lies along the rod axis (when it is straight), and is positive outward

from the secondary boom mounting. The positive YSRJ axis is directed from the center

of the rod radially outward along the bisector of the overlap (in the transverse plane at

the base of the rod). The positive zSR J axm io,***_ a • i_,h_.-h,_.d_d o_tc_.

The rotations _SRJ and _SRJ align the straight rod axis, XSRJ, as desired. The rota-

tion 5SR J aligns the YSRJ axis along the overlap bisector. When all three Euler angles

are zero, XSR J is parallel to XS, etc.

The Jth rod frame is obtained from the secondary boom frame by a translation without

rotation from the origin of the secondary boom frame to the center of the base of the

rod, followed by three rotations. The first is a rotation _SRJ about the translated X S

axis, the second is a rotation _SRJ about the displaced ZSR J axis, and the third is a

rotation 5SR J about the XSR J axis.

The matrix of the rotational transformation from the secondary boom frame to the Jth

rod frame is [$j],

" [1:XSR J X S

YSRJ ISj] YS

ZSR J Z S .
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The elements

SjII

Sj12

Sj13

Sj21

Sj22

Sj23

Sj31

Sj32

Sj33

of the [SjI matrix are

= cos :_SRJ,

= cos a SRJ sin _ SRJ'

= sin r_SRJ sin :_SILT'

= -sin _SRJ cos 6 SRJ'

= cos _ SRJ cos _'SRJ cos 5 SRJ - sin _ SRJ sin 5 SRJ,

= sin _ SRJ cos 7SRJ cos 5 SILT + cos _ SRJ sin 6 SRJ'

= sin )'SRJ sin 6 SILT,

= -cos aSRJ cos _SRJ sin 6 SRJ - sin _SRJ cos 6SRJ,

= -sin r_SR J cos 7SRJ sin 5SR J + cos _SRJ cos 5SR J.

The reference frames, translations, angles, and matrix elements for both rods are

similar. The equations are obtained by letting J take the values 1 and 2.

2.1.6 Boom Studies

2.1.6.1 Gravity Bending

The gravity bending of a rod attached to an orbiting spacecraft is analyzed. The attitude

of the spacecraft and rod are assumed not to vary relative to the orbital frame (steady-

state case); and there is a weight at the outer end of the rod. The end attached to the

satellite is assumed, for simplicity, to coincide with the satellite center of mass. This

point is assumed to follow a circular or elliptical point about the geocenter. The earth's

gravitational field is assumed to follow an inverse square law, and have perfect spherical

symmetry.

It is shown that, with the MAGGE configuration and altitude, the tip deflection is negligible

if the orbit is circular. The general equation is given for the elliptical orbit, but no

numerical results were obtained. It is believed that the results would not differ from

those of the circular case for an orbit of small eccentricity.

Since the rod will be shown to be nearly straight, the gravity gradient effect is practically

that due to the variation of the field along a straight line in space. The attitude of this

line is expressed in the orbital reference frame, PQR, discussed in Section 2.1.3. X

and Y axes are sufficient, as illustrated in Figure 2.1-50. The XY plane makes an

angle ¢ with the RP plane, and the X axis makes an angle {} with the R axis.

vectors X and Y are

X=Rcos _ +Pcos ¢ sinO +Qsin¢ sin 0,

Y=-RsinO + Pcos ¢ cos {} +Qsin¢ cos 0.

The unit

(1)

(2)

The velocities and accelerations of the unit vectors in the orbital frame are

= _ QXR=PWo,o
(3)
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Figure 2.1-50. Reference Frames

= w oQxP=-Ro_o, (4)

-- o, (5)

"ft.= I;_o+p,L °

2 • (6)= -R ¢_o + p 020'

i;= -fi._Oo-R:_ o
2

= -Pco o -Ro_o, (7)

= 0, (8)

where 00 is the orbital angular velocity and 0oo is the orbital angular acceleration.

The effect of the earth's gravity is illustrated in Figure 2.1-51. The orbital radius

is RA, and RR A is the vector from the geocenter to the center of mass of the satellite.
A rod element has a mass

dm= pm dl, (9)

where Pm is the lineal mass density, and 1 is the distance from the satellite center of

mass to the rod element. The vector distance is Xl. The distance to the tip mass is L,

the length of the rod, and this vector distance is XL.

The vector from the geocenter to the rod element is, as shown in Figure 2.1-51,

R i = RR A + Xl

= R(R A +icos 0) + Plcos ¢ sin0 +Q1 sin ¢ sin _. (lO)
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Figure 2. 1-51. Gravity Acting on a Straight Rod With a Tip Weight

The vector from the geocenter to the tip weight is the same, with I replaced by L.

The velocity of the rod element is

= AmA +1cos_)+RAA +_ lcos_ sine

= RRA+_ o [-Rlcosesine+P(RA+ICos_)]. (11)

The acceleration of the rod element is

+ _o Icos _sine+ P(R A+ Icose)+ P

[= 2P _o +R + Rlcos e sin 0+ P(R A+ Icos 0

+ _ 2 IR(RA+icose)_Plcos_sine]o (12)

The velocity and acceleration of the tip mass are the same, except that 1 is replaced

by L.

The gravity force on the rod element is

K d m K Pm dl

d_, : i_d_ _ : _, I_1_

where K is the universal gravity constant multiplied by the mass of the earth.

(13)
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The denominatorin equation(13) maybeapproximatedby the following procedure.
equation(10),

(RA +lcos 0) 2+12cos 2 Csin 2 {_

+ 12 sin 2 ¢ sin 2 0

From

RA2+ 21R A cos 8 + 12

RA 2 1 +_ cos 0+ 12 .
(14)

From the relation,

(I+X) -3/2 = 1-3 X+ 15 X 2 + ...... , (15)

can be derived,

The higher-order terms in the ratio of 1 to R A may be neglected because this ratio is

small.

The gravity force on the rod element is then

since

dF. =
1 2 (31)[ I1- ¢% Pm dl 1 - _ cos 0 R R A + 1 cos 0)

+ Pl cos ¢ sin 0 + Q 1 sin ¢ sin 0

J
K (18)

RA---_= _o 2 .

(17)

The net load on the rod element is the gravity force minus the product of its mass and

acceleration,

dF = Pm

+P

dl [R (3 _o 2

-2 _o RA-_'o RA+3 _o 2

l

Q _ 21 sin ¢ sin 01

O ]

l cos 0 - + u:o 1 cos ¢ sin

)]_A cos ¢ sin O

The equation for the gravity force on the tip mass is similar to equation (17),

 cos
1

+ P Lcos esin 0+ QLsin¢ sin 0| .

J
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The net force is the gravity force minus the product of mass and acceleration,

2 Lcos O - + o0oLcos CSinO
F N = M R o0o

+P ( -2cc°i_A-_°RA+3°_°2 L2_A cos ¢ sine)

L sin ¢ sin e J (21)
2

-Q o_ O

In equations (19) and (21), higher-order terms in the ratio of 1 to RA or of L to RA have
again been neglected. These equations are for the distributed and concentrated forces

which load the rod• The transverse (Y) components load the rod as a cantilever beam.

The axial (X) components would load it as a column, but since these are tensile forces,

their effect on the deflection is neglected.

The transverse component of the distributed load is

dFy = Pmdl [-O_o21Sin0 cos # (3+sin 2_)

"" ]+R Asin# - 2 cco cos ¢cos 0 - RAcos ¢ cos e . (22)

The transverse component of the concentrated load is
P

FNy = M I-c0# 2 Lsin ecos# (3 +sin 2¢)
L "1

+RASin#- 2ccoI_A cos¢cos #- _oRAC°S _ cos #J . (23)

The distributedload is integratedwith respect to length, with the boundary condition

thatthe shear is - FNy at 1= L,
l-

Fy = Pm _½ _"o 2sin#c°s O(L2-12)(3+ sin2_

I_

[O_o2+ M L sin #cos # (3+ sin2_) + cco RA cos ¢ cos #

+2 o_oI_Acos ¢ cos# -RASin0[ . (24)

_t

J

This transverse force is the derivative of the bending moment,

d MB
--d[--- = Fy• (25)

The bending moment at 1 = L is that necessary to angularly accelerate the tip mass•

The angular acceleration of this mass is

_'M =°°oSin¢ cos e. (26)
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If its moment of inertia is IM, then

_B I=L = - IM _c° sine cos 0.

The reason for the minus sign is that M B is the reaction on the rod.

(27)

Integration of equation (25), using equation (27) as a boundary condition, yields the

bending moment as a function of 1:

M B (1) = Pm i ¢Co

cos2 o Acoscos 

Lsin ecos _(3+ ¢)
2 sin 2

+ M (I-L) a' o

+ _o RA cos ¢cos 0+ 2 ¢_oI_A cos ¢ cos O- RA sin 0]
3

- I M w osin ¢ cos O. (28)

The second derivative of the deflection is the bending moment divided by the flexural

rigidity, EI,

M B 1- EI (29)

The first derivative is obtained by integrating equation (28), and using the boundary con-

dition that the slope is zero at the end where 1 is zero,

1 I [½ sin0c°s0(3+sin2¢)(½ L212 i 14 L 3 )
dd_ll - EI Om _o 2 -i"2 _2 1

 ,20( o  cosocoso

0

+ Wo RAI°S ¢c°s e+2 UJo t_A c°s¢c°s°-i_Asine]

- IM _ol sin ¢ cos 0 I. (30)
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The deflectionis obtained by integratingequation(30), and using the boundary condiUon

thatthe deflectionis zero at the end where 1 is zero,

y(1) = _T Pm ½ _o 2sin0cos 0(3+sin2_) _ L 213____ 15_½ L312

IM _'o12 I

l

-_- sine cos 0 . (31)
1

!

The maximum deflection, for any set of satellite and orbital parameters and attitude

errors can be found from this equation. In particular, the tip deflection, if the satellite

is in a circular orbit, is

2L4

y(L) = o ½ sin 2¢)(M
11

- _ sin0cos 0 (1+ +4-_ P m L). (32)

For a 6,000 nautical-mile orbit, _o is . 000,273 radians per second. For a rod 100

feet long, the rod mass, Pm L, is 0. 0465 slugs. The flexural rigidity, EI, is 13.0
pound-feet 2. With a two-pound tip mass, M is 0. 062 slugs. If ¢ is 90 degrees and

O is 45 degrees, the tip deflection is 0. 0285 feet (upward).

2.1.6.2 Thermal Bending

The initial work for the ATS program on Gravity Gradient Boom thermal bending has

essentially consisted of coordination of results of a program being presently conducted

for the NASA Ames Research Center under Contract No. NAS 2-1946. The program

is now in its final stages and consists of three principal phases:

1. Thermal Analysis

2. Deflection Analysis

3. Experimental Verification

2. 1.6.2.1 Thermal Analysis

Thermal analysis of the gravity gradient rod consists of a nodal point-to-point determina-

tion of temperature around the periphery of the rod and along its length. Figure 2. 1-52

illustrates the nodes. The work effort considers only steady state temperatures and

takes form in a digital computer program. Use of the digital program technique of

analysis is most suitable to the configuration details of the rod and affords the means

of attaining greatest analytical accuracy in the determination of temperature gradients.
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With this method temperature profiles can be obtained for various overlap and twist

rate configurations taking into consideration conduction and/or radiation heat exchange

at the overlap areas.

TYPICAL _
NODE

\

\
f

Figure 2.1-52. Nodes of Gravity Gradient Rod

The major portion of the program consists of a steady-state analysis taking a fixed

orientation of the rod and a fixed angle of solar incidence with respect to the rod center-

line. This work is performed with several given fixed sun angles with respect to the

overlapped portion of the rod. An evaluation is performed to determine the effect of

variance of the solar angle of incidence with respect to rod centerline on the bending

of the gravity gradient rod. It is anticipated that the "changing angle" effect (as the

rod bends away from the sun) will be insignificant with gravity gradient rods of practical

length.

Preparation for the proposed analyses involves prior assessment of the inter-radiation

effect at the internal surfaces of the rod. Accordingly, analyses are performed to

evaluate the effect of internal radiation within the rod. Another preliminary task in-

volves the determination of optimum node sizes to be used in the analyses. This is

a straightforward task which essentially compares the effects of several node sizes.

The selection of an optimum node size provides maximum accuracy for the planned

analysis commensurate with efficient use of the computer program. Using the largest

node size which still preserves accuracy reduces required levels of effort for the

preparation of computer programs. The objective in optimizing node size is to permit

the calculation of a smooth temperature profile over the surface of the rod.

A digital computer program is used for the thermal analysis because of its wide appli-

cability, computational accuracy and inherent suitability to the rod structure. The

nodal technique permits accurate determinations of temperature profiles by computing

a thermal balance for each volumetric element (node) comprising the total rod structure.

Presently, the Spacecraft Department of General Electric has a computer program which

is capable of handling up to 1000 such nodal elements. The program has provisions for

computing node to node conduction of heat as well as inter-radiation among the nodes.

It also provides for the inclusion of absorbed surface heat flux, heat storage, inter-nodal

surface conductance and internal heat generation (if applicable) in the thermal balance
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calculations for eachnode. Radiationto spaceandto any fixed or varying temperature

boundary is further provided. This digital program is capable of computing transient

as well as steady state temperature distributions. In its existing form, the proposed

computer program makes use of the linearized approach in computing radiation heat

exchange.

The results of this phase of the program will be a set of steady-state temperatures for

all the nodes of the given rod configurations and sets of external conditions. These

temperature profiles will be used to determine mechanical behavior as discussed in

paragraph 2. 1.6.2.2.

Although it is recognized that the proposed approach does not yield the desired close

form solution, it is felt that it is the most realistic approach to the problem since a

closed form solution could not be undertaken without making certain vital assumptions

which might not have been strictly correct. By solving a set of problems which en-

compass the full range of significant variables, it is felt that we will be able to develop

curves which describe the dependence of the thermal bending on these variables. It

is also possible that curve fitting techniques might yield "closed form type" expressions

for temperature profile. It is also possible that in future attempts at a closed form

solution we might be able to mold our assumptions according to what will have been de-

termined to be correct by the node-to-node solution.

2.1.6. 2.2 Deflection Analysis

It is anticipated that the thermal profiles resulting from the effort described in paragraph

2. 1.6.2.1 will demonstrate little if any symmetry and will vary along the length of the

rod as the overlap "seam" rotates with respect to the sun vector. The mechanical

picture is further complicated by the fact that the overlap creates the probability that

two elements at different temperatures will exist at the same location on the circum-

ference (peripheral angle with respect to sun vector).

It is evident that with temperature profiles as described above, the net result will be

bending about two mutually perpendicular axes (the magnitude of this bending will vary

over the length of the rod due to the helical overlap) and distortion of the individual

nodal sections and the buildup of internal stresses where bending deformation cannot

completely _ccommodate the thermally induced strains.

The program for solving the thermal deformation/stress problem is as follows:

1. Initial Evaluation - The temperature inputs will be used to plot a temperature
profile around the periphery of each differential increment of tube length. These
temperature profiles will be used to develop a description of the strain states
by multiplying by the pertinent _ T's. By integrating deformation over the
length of the rod, the deflected shape can be defined. It should be noted that
this approach does not account for the internal stress created by the probable
non-uniform variation of temperature. We must, therefore, carefully assume
some idealized temperature distribution (approximating the actual temperature
distribution) which would be likely to create a stress-free state of the rod. This
would leave small unaccounted for deviations from the actual temperature dis-
tributions. These deviations would be representative of the residual stresses
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that would exist in the rod after thermal bending. If the effective temperature
profiles had been judiciously assumed, these stress patterns would result in
zero equivalent external loads and would not significantly alter the direction
and magnitude of the thermal deflection.

Detail Evaluation - If the actual temperature profiles vary drastically from those
which create a stress-free state of the rod, a more rigorous analysis will have
to be performed. In this approach, each individual temperature node will be
considered as being held at its boundaries by stresses (magnitude E _ T) which
constrains its shape to remain constant. The beam stiffness equations for the
rod will be written and solved simultaneously with node boundary stress equa-
tions (above) for the condition of zero external loads. This solution will yield
thermal deflection and residual stresses.

The results of the above studies will be presented in parametric form together with

recommendations of techniques which will eliminate or minimize out-of-plane deflection.

2.1.6.2.3 Experimental Verification

In this phase of the proposed program, beryllium-copper rods, approximately eight

feet long, will be tested in a smaller chamber°

These rod specimens will be tested with the sun vector at various angles around the

circumference of the rod. In this way the effect of the sun's angular traverse with re-

spect to the overlap edge may be evaluated. An advantage to the use of the straight over-

lap is that the effect of a particular overlap/sun angle is amplified by allowing the re-

sulting deflection to act over the entire length of the specimen. In this manner we can

establish the accuracy with which the analysis can predict the deflection mode of the rod

for all possible overlap/sun angles. Integration of the effect of changing overlap/sun

angle over the length of the rod (as is caused by twisting) will be a fairly simple analytical

task.

2.1.6.3 Boom Dynamic Response

An investigation was performed to evaluate the effects on the rods of the impulse asso-

ciated with the orbit eccentricity maneuver. The analysis is based on a simplified four-

degree of freedom model consisting of the satellite and a 3-mass representation of the

rod. The rods are assumed to be straight and only transverse vibratory modes are

considered. The method of analysis consisted of developing the equations of vibration

in normal coordinates and studying the response of each mode as a single degree of

freedom system subjected to a series of pulses.

When no damping is considered, it was found that response of the second mode is high.

The inclusion of a small amount of viscous damping, however, greatly reduces the ex-

pected response and two values are chosen to determine the excursions of this mode.

It is also assumed that the periods of vibration approach the closest multiple or sub-

multiple of the pulse period of 80 seconds and the pulse is assumed to be an average of

T Calculated T Assumed
Mode (milliseconds) (milliseconds)

1 292 320

2 23.7 26.6
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1 poundfor 320milliseconds. The results of the analysis are shown in Figure 2.1-53

and agree favorably with the computer solution made for a model having considerably more

degrees of freedom. Bending moment diagrams are shown in Figure 2. 1-54 and indicate

that stresses will be at least two order.s of magnitude less than the critical crippling

stress of the rods.

The results, however, should be considered as preliminary in nature since the effect

of axial vibrations have not been considered. Axial vibrations may prove to be quite

significant since the axial loading approaches the point of column instability on a steady-

state basis. The effects of axial loading on an initially deformed column are presently

being studied.

Preliminary investigations of rods with initial curvature indicate that the stiffness of

the rod in the longitudinal direction is strongly dependent on the amount of initial tip

-_ TIP

ATS _./3 _ _/'3 _/3 _3_2SATELLITy _-- ----._... --@_" _ 2o 06ino

_"_" -_..j in.

FIRST MODE RESPONSE - NO DAMPING
(AFTER 2 PULSES)

-----
I .714 in°

o 5427 in.
0856 in.o

SECOND MODE RESPONSE 1% DAMPING
(AFTER 40 PULSES)

SECOND MODE RESPONSE 1/2% DAMPING
(AFTER 80 PULSES)

Figure 2. 1-53. Damping Analysis Results
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.0139
IN:-LBS

M

37 INrLBS FIRST MODE

.028 INrLBS

f max - M _ o037 - 94 psi
R2t _(1/4)2(o002)

Figure 2.1-54. Bending Moment Diagrams

mass eccentricit/. The longitudinal stiffness drops very rapidly for comparatively small

tip eccentricities, from its initial value of a perfectly straight rod. The longitudinal

stiffness appears to vary inversely as the square of the tip eccentricity and the coupling

terms between the longitudinal and transverse stiffness factors vary inversely as the

tip eccentricity and become quite significant for tip eccentricities of over five feet.

It is planned to study the problem of coupled transverse and longitudinal response of the

booms using the non linearity effects discussed.

Analytical Model (Sym about centerline)

) 1 = 400 IN,LBS

,-_ 400 IN. t-_ 400 IN. /_

M1 M2 M3
o 52 LB . 52 LB 2.76 LBS

EI = 2000 LB - IN2
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IKo.l llxI
Stiffness Matrix

K

Mass Matrix

M

= 0

7.75 -11.5 4.5 - . 75

-11.5 20 -11.5 3

4. 5 -11.5 11 -4

-.75 3 - 4 1.75

780
.52

Solving (I)by Matrix Iteration:

0

p2 = 4.6xlO -4

.52
2.76

7xlO -2

Eigenvectors are

X

1 - .0265

1 1.000

1 3.47

1 6.66

- .00619

6.30

8.30

-1

Periods of Vibration

TO = co

T 1 = 292 sec.

T 2 = 23.7sec.

T 3 = 8.1 sec.

Normalized Eigenvectors (xTMx = 1)

N __

1

3 EI

13 (3.25)

•600

- .00887

25.5

-17.5

1

rad2/sec 2

.702 - .0457 .01578 - .0078

• 702 1.7235 -16.065 22.47

.702 5.986 -21.165 -15.4

.702 11.49 2.55 .881
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Equations of Forced Vibration in Normal Coordinates

(2)

p2_" + $ = NTp

F (t)
0

P = 0
0

_'o = "702 P(t)

_'1 + P12 _1

}'2 + P22 52

_'3 + P32 53

= -. 0457 P (t)

= . 01578 P (t)

= -. 0078 p (t)

(Rigid Body Mode)

Equations (2) can be treated as a series single degree of freedom systems. The resultant

motion will be the sum of the four, and can be transformed back to the "X" coordinate

system by the following transformation

Ixl I ll l
The expression for the response of an undamped single degree of freedom system due to

a series of impulsive loads can be expressed as: (Reference 2)

2F [ *_ 5
(3) q(t I) = -2- sinp_ [sinp(t l-g) +sinp(t I - r-g)

P

+ sin (t 1 - 2T -_) + .... ]

where

F = force/mass

p = circular frequency

= pulse width

T = pulse separation

Since A P and _ will be small equation (3) reduces to

(4)

K viscous damping is included the following equation will govern for a single pulse:

(Reference 2)

1
1 -n (tl-t)

(5) q (t 1) - p F e sin p (tl-t) dt

O

_= Vp

where _ is critical viscous damping ratio

F = constant for 0 < t < _,
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Substituting in (5) and integrating

(6) q (t1) = F e-n (tl-A) [2 sinp-- A
2 {_?cosp(tl+_)+PSin(tl.-_)} ]

_2+p2

For a series of pulses spaced at T seconds and _ and P small, equation (6) reduces to:

-n [tl-(k-1) T]

(7) q(tl) = Zek IF 4] [sin p (tl-(k-1))T ]

k = number of pulses

Response of First Mode (Equation 4)

F = .0457 A =.32
2?7

P = 3-2-6 n =o

FA
T- = .75

_1 : .75 sin 3_ tl + sin

(-_-- t 1+ sin 320 -

+ sin (_2_ tl--32 -_-)

240 < t 1 < 320

It can be seen that _ lis periodic with T = 320 seconds.

series will be equal to the _J_ when t 1 = 160 seconds.

61 = (.75)_/_= 1.06

The maximum value of the sine

Therefore,

X = N _lSin19 °

-.015 I

"!2:06

3.92

Response of Second Mode (Equation 7}

a) 1% viscous damping

b) 1/2% viscous damping

F = .01578 P - 2?7
66.6 -

6_

80
.32

n = rl (.235)

FA
--_ = . 0214

-.235_= _ (.0214) e
_2 k

tl 1)0,]
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a) For N = 1%

2 -_ ' 105 After 40 pulses

b) For 7? = 1/2%

2 -_ .214 After 80 pulses

X = N _2 sin 19 °

.00485

-.5427

-.714

.0856

for V = 1% & =

.001

-1.119

-1.474

.177

1
for V = 2 %

A computer study of the response of the gravity gradient rod to orbit eccentricity pulses

has also been made.

The rod has been represented as a beam having an EI of 1800 lb-in. 2 with a mass of

2.5 pounds and 2.34 lb-in. 2 of rotational inertia at one end. The weight of the rod was

taken as 1/4 ounce per foot. The rods were considered fixed to the vehicle body (i. e.

no flexibility in mounting was considered), coordinates at the vehicle body are common

with the end coordinates of the rod. The vehicle is considered rigid.

The analysis performed to date ignores axial loads in the rods and lack of initial straight-

ness. Bending is considered in a single plane so that torsional effects are ignored. Only

translational coordinates have been included for the body.

The rods were divided into six segments and a stiffness matrix written for each element.

A consistent mass matrix (a full four-by-four matrix) was constructed. The six indi-

vidual elements were assembled into a 13-degree of freedom system (a translation and

rotation between each pair of elements and at the end mass, and a translation of the

center body). The first six mode shapes and frequencies are shown in Table 2.1-5.

These mode shapes are normalized to a generalized mass of 1. The corresponding

generalized stiffnesses are:

Frequency, CPS Generalized Stiffness

0 0
.00324 .000428
.0407 .0655
.129 .658
.269 2.85
.462 8.45
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Frequency, CPS

Deflection) STA 1200
Rotation _ (end mass)

Deflecti°nIRotation STA 1000

RotationDeflecti°nI STA 800

DeflectiOnRotationI STA 600

DeflectiOnRotation} STA 400

DeflectiOnRotationI STA 200

Deflection _ STA 0
Rotation _ (Vehicle

Body)

TABLE 2.1-5• MODE SHAPES

1. 469
0

1.469
0

1. 469
0

1. 469
0

I. 469
0

1.469
0

1.469
0

• 00329

11.5
.0145

8.63
.0141

5.91
•0130

3.49
• 0110

1.56
.0082

.267

.0045

.201
0

0407

- 3.05
- .080

12. 05
- .066

21.66
- .027

22.54
•0180

15.46
.049

5.30
• 046

• 070
0

129

1•74
.014

-19.93
.055

-15.85
- .091

8.61
- .125

23.68
- .010

13.40
.093

- .039
0

269

1.13
.020

-22.17
•020

5.50
- 1.85

20.72
• 072

-11.61
.171

-20.71
- . 091

027
0

.462

-. 26
-. 26

18.26
.15

8.60
- .234

11.34
.221

-24.45
- .013

The response to orbit eccentricity pulse was calculated by obtaining the LaPlace trans-

form of the pulse in modal coordinates and solving each modal response equation. The

inverse transformation yields the modal response which is transformed once more to

the physical coordinate set. One percent of critical viscous damping was assumed in all

modes.

The excitation applied was a pulse of one-pound for 0. 3 sec parallel with the vehicle axis.

The pulse was repeated at 80-second intervals.

0° 3 SECo

80 SEC

Il

Computations were carried out for 31 pulses.

Maximum excursion of the end mass occurred just after the second pulse. Figure 2.1-55

shows the motion of the end mass, relative to the vehicle body, through three pulses.

The simplified analyses performed to date are useful to give a general indication of the

magnitude of the problem of tuning; however, with regard to actual design process gives

a trivial result. Representation of the rods disregarding the deviation from straightness,

the actual behavior of the rod (assumed as a tube with shear continuity) and especially
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the axial load (the major component of the applied force is along the axis of the rod rather

than transverse) has ignored the areas of primary significance in actual design of the rod

and in determination of its behavior. Primary effort is presently devoted to the develop-

ment of an improved representation of the behavior of the actual rod under flexural load

and to incorporate the (beam column) effects of axial load in the response determination.

2.1.7 Mass Properties Data

The following tables represent the Mass Properties of the Medium Altitude Gravity

Gradient Experiment as of October 12, 1964. The dimensions given in Table 2.1-6

represent the smallest rectangular shape that can enclose the packaging excluding con-

nectors and mounting provisions. The weight given for each package includes the bracketry

necessary to mount the package in the vehicles. At this time the package center of gravity

is assumed to be coincident with the volume centroid. The tentative item list (Table 2.1-7)

represents packages which are not in the original work scope but could possibly be added

as a future requirement.

Tables 2.1-8A and 2.1-8B represent the sequenced mass moments of inertia of the

Damper and Damper Booms Package and the X-Boom Packages respectively. It must

be noted that the inertias in Table 2.1-8A represent the inertias of the Damper and

Damper Booms only and Table 2.1-8B the inertias of the X-Boom Packages only. The

contribution of the vehicle body is not included in these tables.

TABLE 2.1-6. MEDIUM ALTITUDE GRAVITY GRADIENT
EXPERIMENT WEIGHTS AND VOLUMES

PACKAGE WEIGHT (LBS) DIMENSIONS (IN.)

No. I X-Boom Package 28. I 8.0 x 9.8 x 20. 6

No. 2 X-Boom Package

Damper and Damper Boom

R. F. Attitude Sensor

28.1

23.1

10.4

8.0x 9.8 x 20.6

I0. I x lO. Ix 16.2

6.0x 6.0x 6.0

No. 1 Earth Sensor

No. 2 Earth Sensor

Sun Sensors (5)

Sun Sensor Electronics

No. 1 T.V. Camera

No. 2 T°V. Camera

No. 1 T.V. Electronics

No. 2 T.V. Electronics

Power Control Unit

Diagnostic Sensors

Harness

TOTAL CURRENT WEIGHT

5.5

5.5

1.3

4.0

5.0

5.0

7.0

7.0

20. 0

5.0

6.0

161.0 LBS

5.4x 5.4x6.0

5.4x 5.4x6.0

0.9x3.1x2.8(Each)

3.8x 4.5 x7.8

2.5 x 2.5 x 11.0

2.5 x 2.5 x 11.0

3.8x 5.0x7.0

3.8x 5.0x 7.0

5.0x 10.0x 10.0
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TABLE 2.1-7. MEDIUM ALTITUDE GRAVITY GRADIENT

EXPERIMENT TENTATIVE ITEMS WEIGHT SUMMARY

PACKAGE WEIGHT (LBS) DIMENSIONS (IN.)

Magnetometer Sensor 1.0 2.8 x 3.1 x 4.7

Magnetometer Electronics 2. 3 3.0 x 5.5 x 6.5

Center of Pressure Relocation Boom 3.5 4.0 x 4.0 x 8.0

Magnetic Torquing Coil No. 1 0.3 1.2 x 1.2 x 2.1

Magnetic Torquing Coil No. 2 0. 3 1.2 x 1.2 x 2.1

Magnetic Torquing Coil No. 3 0. 3 1.2 x 1.2 x 2.1

Magnetic Torquing Control 0.3 1.2 x 1.2 x 2.1

TOTAL TENTATIVE PACKAGES 8.0 LBS

TABLES 2.1-8A&B. SEQUENCED MASS PROPERTY DATA

Sequence
Number

Center of Gravity
(In. From Ref. Datum)

Weight
Description (lbs.) X* L* Y*

TABLE 2.1-8A. DAMPER AND
DAMPER BOOM PACKAGES.

Booms Sto:ved

Booms Deployed in L-Y Plane

Booms Deployed @ 45 ° to L-Y Plane

23.1 0 6.8 -22.4

23.1 0 6.8 -22.4

23.1 0 6.8 -22.4

Mass Moments of Inertia
(Slug-Ft. 2)

IL** IL** Iy**

3.8 2.6 1.2

279.21 154.1 125.2

141.6 155.8 141.0

TABLE 2.1-SB. X-BOOM
PACKAGES (NO. 1 + NO. 2).

Booms Stowed 56.2 0 22.5 0

Booms Deployed @ 19 ° 56.2 0 22.5 0
i

@ 31 ° 56.2 0 22.5 0

@ 25 ° 56.2 0 22.5 0

@15 ° i 56.2 0 22.5 0
i

@11° i 56.2 0 i 22.5 0

5.7 6.0 0.5

457 3822 3469

1084 3774 2936

718 3801 3226

294 3831 3599

168 i 3836 3702

*Denotes Vehicle Axes, L is in Vehicle Station with L = 0 at Spacecraft Separation Plane

**Taken about set of axes passing through vehicle center of gravity and parallel to vehicle axes
(Vehicle Center of Gravity of L = 22.5, X = 0, Y = 0).
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2.2 Boom Subsystem:

The boom subsystem of the ATS Spacecraft consists of the four primary gravity-gradient

booms, the mechanism required for extension and scissoring of the primary booms, and

the two damper booms including the canister for storage and ejection of the damper booms.

2.2.1 Design and Analysis

2.2. 1. 1 Design Concept Selection

The basic requirements for the boom subsystem are as follows:

. Provide a set of four erectable booms which can be stowed within the confines of
the ATS Spacecraft during launch, and then deployed to a length of 100 feet each in
an "IC' configuration about the Spacecraft, carrying weights at the boom tips in
order to achieve a prescribed set of inertias about the three principal axes of the
Spacecraft.

2. Provide a means of retracting these rods on command to desired lengths less
than 100 feet each.

. Provide a means of changing the angles included between the booms in a manner
that maintains a symmetrical configuration about the satellite yaw axis. This
action, which is limited to a total of 20 degrees on each boom, is generally
referred to as scissoring.

. Provide a set of two damper borne booms which will each extend to a length of
45 feet along the same straight line in opposite directions. These booms are to
carry tip masses to their ends which will provide the proper inertia for the
operation of the damper. After initial deployment, no mechanical connection or
wiring is to extend from the damper boom platform to the spacecraft body. The
damper booms are not required to retract.

5. Accomplish the above within the tolerance/disturbance constraints of the gravity-
gradient stabilization system performance requirements.

The basic extendible boom selected for this mission is the Storable Tubular Extendible

Member (STEM) developed by the DeHavilland Aircraft of Canada, Limited. This

technique involves the formation of a tubular section from a flat metal strip which is

formed and heat-tested in the tubular form then flattened under stress and wound onto a

storage drum. Subsequent erection in orbit is accomplished by paying out the stowed

strip through a set of guides which allow the boom to form into its natural tubular shape.

The edges of the metal strip overlap each other to render stiffness to the operating section.

Storage/erection units for the STEM tubing are of both motorized and self-erecting type.

The motorized type employs a motor to drive the storage drum and thereby provide a

means of retracting the extended booms. The self-erecting type units use the strain

energy in the stowed metal strip to rotate the storage drum and erect the boom.

Motorized units were selected for the primary booms due to the requirement to retract.

Self-erecting units were selected for the secondary (damper) booms.

Initial considerations for the scissoring mechanism included several which provided

mechanical coordination of the motion of all four primary booms. Design studies

included versions using bull gears, pulley systems, bellcrank linkages, and jackscrews.

However, the constraints imposed by spacecraft size and other equipment in the boom

mounting area proved the mechanical connection of all booms to be impractical. An
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evaluationof thecoordination required betweenboomsfor bothextensionandscissoring
showedthat a systemwhich dependedon electrical synchronizationwasnot impractical.
Accordingly, thefollowing system wasdevised:

i. The four boom units are divided intotwo pairs.

o

.

The two units making-up each pair are mounted as close as possible to one
another and are coupled by a bell-crank linkage to transmit scissoring motion and
a gear train to coordinate extension drum drive.

Each pair of units is provided with one motor for extension and one motor for
scissoring. The motors are encased in a hermetically sealed container to
preserve their useful life in space, torque being delivered through a flexible
membraino

4. The two units of each pair, their drive train, motor, and scissoring linkage are all
mounted with a single framework. Extension units are pivoted to this framework.

5. Motion between the two pairs of units is coordinated electrically.

Initiallyifthe units were paired such thata pair of units would be at each end of the satellite

yaw axes since thisappeared to yield the most compact packages° See Figure 2.2-1,

View A.

However, it was learned that the space at the earth-pointed end of the yaw axes was at a

premium for all earth pointing experiments. Accordingly, a side mounted pairing of the

units was devised to remove the boom packages from the area prescribed for earth pointing

experiments° See Figure 2.2-1, View B.

It is this latter arrangement which has been the basis of the further design and development

reported on the paragraphs that follow.

2.2° 1o2 Major Subcontract:

Since the basic component of this subsystem (erectable STEM type booms)was previously

solely manufactured by the Special Products Division of the DeHavilland Aircraft of

Canada Limited, it was decided to let a subcontractor to DeHavilland to provide the

development, manufacture and qualification of the boom system components. This was

done with the approval of NASA-Goddard Space Flight Center.

The current status of this subcontract is as follows:

1o Negotiations have been conducted with DeHavilland and a price has been quoted for
the basic boom subsystem subcontractor tasks as outlined in the Work Statement
delineated in General Electric Document No. N-20273-A dated August 21, 1964.

2. Additional quotations have been received from DeHavilland covering added scope
items associated with subcontractor effort on the boom subsystem as delineated
in "Package A" to the N-20273-A document, as well as other added scope efforts
as they come to light.

3. The subcontractor has been incrementally funded on a level of effort basis from
June 29, 1964 until October 31, 1964o In addition, the subcontractor has requested
materials procurement funds commencing with the month of October in order to
initiate procurement of long-lead items in time to meet the present schedule.
This request is currently being reviewed by GE.

4. The subcontract has not as yet been consummated. A finalized subcontract work
statement and boom subsystem specification are now in preparation in anticipation of
imminent consummating of the subject subcontract.
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5. When the subcontract is consummated, it will reflect the scope of work prescribed
by the finally negotiated prime contract (as pertians to the boom subsystem) and
will take into account all incremental funding payments made up to that time.

2.2.1° 3 Boom Subsystem Specification

General Electric Specification SVS7316 has been prepared for the boom subsystem° It is

currently being revised to reflect the latest requirements to be included as an exhibit to

the subcontract.

2.2.1° 4 Delineation of Design Details

2.2.1o 4.1 Erectable Booms

The basic erectable boom is a flat beryllium copper element two inches wide, 0. 002 inch

thick, and of a length equal to the desired boom length° The element is rolled about its

longitudinal axis into an overlapped, right, circular cylinder of one half inch diameter.

The tape is heat treated in this form such that its natural stress free condition is the over-

lap tube. Storage of the boom is effected by elastically flattening the tape and coiling it

about a storage spool as shown in Figure 2.2.1-2. Subsequent erection is accomplished

by rotation of the storage spool in the direction which drives the stowed tape through the

guidance until it reforms into the tubular shape.

Sections A-A and B-B of Figure 2.2-2 show typical sections of the guidance used for

erection of the booms.

Beryllium-copper booms are silver plated on their outside diameters to minimize thermal

bending.

2.2.1.4.2 Erection Units

The erection units for the primary booms house the storage spool and guidance and are

driven externally by means of a gear train. They take the form of a roughly rectangualr

prism 8.25 inches long, 4. 5 inches high, and 3.0 inches wide (as shown in Figure 2.2-3).

The erection units also secure the inboard ends of the tip weight assemblies at the point

defined by the 3 1/2 degree and 0.22 inch dimensions in Figure 2.2-3. (Additional lateral

support during launch is rendered the tip weight by the overall assembly housing at a

point near the cg of the tip weight. )

The attachment of the tip weight to the erection unit is so fashioned as to release the tip

weight upon ipitial motion of the boom tape at erection.

Figure 2.2-4 shows a schematic of the functional parts internal to the erection unit. In the

stowed condition, the boom tape is wound on the storage spool and fed through the guidance

up to the pointwhere it passes just outside of the erection unit and fastens to the tip weight

assembly. Torque applied to the spool in the direction shown will drive the stowed tape

through the guidance and free the tip weight from its attachment to the erection unit.

Continued application of torque will erect the boom to its full length in the tubular con-

figuration, at which time the full extension microswitch will engage a hole in the storage

spool and cut-off motor power, as well as provide a telemetry event monitor.
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BOOM EXTENDED

NOTES:-
I ONIT5 ARE HAHL_ED _,Y DRIVE 5HkFT AHD MIC_O-5_tl]_I4ES,

Z TOTAL WEIGHT :-- G.5611_

,¢ FLEMIENT _EiGHT :- 1.5¢oltm

5 L_Itl" bVIEIGffT:- 2 50 Ib,

BT1EN._I_4 _A]_ '- eF'T/SEC _ | R

FOR STRUCTURAL ATTACHMENTS SEE FIGURE 2-2-6

Figure 2. 2-3. Outline of Primary Boom
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Reversal of the direction of applied torque will retract the booms. A revolution counter

mounted external to the erection unit will provide telemetry input of boom length, thereby

providing the capability of stopping the erection or retraction process on command at

points other than full extension or full retraction.

As shown in Figure 2.2-4, the storage spool bearings are mounted in arc-shaped slots.

This allows the spool centerline to move in the direction necessary to keep the point of

tangency to the stowed tape always in line with the entry to the guidance at the tape pay-

off point. This motion is necessary since the diameter of the stowed tape will decrease

as the boom is extended. The motion is controlled by a roller that rides on the stowed

tape just below the tape pay-off point. The drum is spring loaded against this roller by

the tension in the spring belt system (see Figure 2.2. 1-4) which serves the additional

function of keeping the strain flattened tape wound tightly on the storage spool.

Since the storage spool centerline moves relative to the housing, external torque can not

be delivered directly to the spool. Therefore, a set of drive gears is provided. This

consists of two gears (one at each side of the erection unit) that are pinned to a common

shaft which is driven externally. Each of these gears meshes with gear teeth cut in the

side cheeks of the storage spool. As seen in Figure 2.2-4, the slot in which the spool

bearing ride is an arc-shaped slot centered at the drive gear shaft. Therefore, the

storage spool is constrained to move in an arc type motion about the drive gear, aiways

maintaining tooth engagement at the pitch diameter of the drive gear. The double gear

(one at each cheek) is provided in order to stabilize the spool and maintain the spool center-

line always parallel to the drive gear shaft.

The housing of the erection unit is constructed of chem-milled aluminum side and end

plates and of a light aluminum top and bottom covers. Tip weights will be tungsten.

The end of each tip mass assembly will be equipped with an aluminum disk to serve as a TV

camera target. The exact coating of this target for optimum TV visibility is yet to be

resolved. Each tip target is fully articulated in order to allow it to lie flush against the

spacecraft "skin" during launch, and erect itself normal to the boom centerline upon

boom erection.

Each ATS boom subsystem requires four such erection units and tip mass assemblies.

2.2. 1.4.3 Scissoring Concept

It is a basic requirement of the system that the primary boom be "scissored"; that is

the angles_ in the plane of the basic "X", between the primary booms must be changed

over a prescribed range while in orbit. In order to mechanize this feature_ it is

necessary to pivot the primary boom erection units.. The motion must be coordinated such

that all four primary booms move simultaneously in order to maintain a symmetrical

configuration about the satellite yaw axes. This is accomplished by pairing the four

primary erection units into two sets, as shown in Figure 2.2-5. View A shows the

details of the scissoring linkage, which is typical for both boom packages but has been

shown only in View A for clarity. The centrally located bellcrank is driven by a shaft

which extends from the drive unit. Rotation of this bellcrank is transmitted through the

push-pull links to the bellcranks on the erection units. Each erection unit is pivoted with
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respect to the overall package at a point concentric with the drive gears. Therefore,

rotation of a single shaft (the central bellcrank drive shafts) manifests itself in equal

and opposite rotation on the part of two primary erection units.

The two separate sets of paired erection units are synchronized electrically so that all

four booms move in the fashion required for proper scissoring.

At launch each boom unit will be caged at the nominal scissor angle which is 38° included

angle between the booms at the top and bottom of the satellite. After initial boom

deployment, the booms are free to move on command about their scissor axes. (The

method of caging the tip masses also cages the erection units about their scissor axes.

Therefore, release of the tip masses by boom erection also releases the scissors cages. )

The range of included angles over which the scissor linkage can move the booms is 22 °

minimum and 62° maximum.

All pivotsin the scissor linkagewill be of the flex-pivottype in order to minimize the

number of bearings to be protected from the space environment.

2o2.1.4.4 Drive Train

2.2.1o4.4.1 Gear Train

The primary boom erection units require externally applied torque at the drive gear shaft,

as mentioned above. This isprovided by a trainof four gears for each pair of primary

erection units. This gear train is shown in View B of Figure 2o2-5; itis typicalfor both

pairs of primary boom units.

One of the center gears of the train is driven by the transmission unit. It, in turn, drives

one erection unitdirectlyand drives the second erection unit by means of an idler gearo

Both erection units are thus driven by a single motor.and their spool rotations are

mechanically synchronized by the gear train.

Note thatthe centerof the erection unitdrive gear must be concentric with the axes about

which the erection unitis pivoted in order to allow the gear train to remain engaged

during scissoring motion (see Figures 2o2-5 and 2.2-6)o

2o 2ol. 4.4o2 Drive Unit

Each primary boom unit pair is equipped with one drive unit which provides the torque

required by the scissors bellcrank and the gear train. Each drive unit contains two Brush

GJY type d-c motors, one for boom extension drive (via gear train) and one for scissors

drive (via bellcrank linkage). The scissors drive motor is equipped with an integral

gear reducer to reduce speed to that required for scissoring rate.

The drive unit also includes an emergency clutch (solenoid operated) which enables each

motor to assume the function of its mate in the event of failure of either motor on a given

set.

At present two designs are under consideration for enveloping the motors with a vacuum

tight shroud to protect them from the space environment. One design uses a Harmonic

Drive unit (as manufactured by the United Shoe Machine Company) at each motor and

leaves the clutching portion of the drive unit relatively exposed to vacuum° Labrinth type
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seals and silicone oil reservoirs would provide a partial pressure in the clutch box. The

other design encloses the entire motor and clutch assembly in a vacuum tight envelope

and uses a bellows type coupling to deliver the torque through the pressure shell° In

either case, two drive shafts would protrude from the clutch box: one for the gear train

and one for the scissors bellcrank.

The clutch box will also house the solenoids for clutch actuation, the microswitch for

solenoid cutoff/telemetry event monitor, and the potentiometer to readout scissors

position°

2.2.1.4.5 Gears and Bearings

The design involves certain gears and bearings which will be at least partially exposed to

the space vacuum and will be expected to operate after long periods of soak in orbit.

Investigations are currently being undertaken to determine the best method for lubricating

these items.

Approaches under consideration are:

1. Various types of dry film lubricants and laminar solids

2° Vacuum stable silicone oils and greases in reservoirs and protected by labrinth
or static type seals

3° Filled plastic gears in mesh with metal gears.

2.2.1.4.6 Structural Housing

As shown in Figure 2.2-6, each pair of primary boom units, together with the associated

drive train and scissor linkage, will be housed by a local structure which coordinates

the locations of all pivots and bearing supports, and provides structural support and caging

of all components as a single unit. This unit will be mounted to the spacecraft structure,

in the appropriate attitude, by means of bracketing. Alignment adjustments of this

housing will be made relative to the satellite body axes. This housing will be fabricated

from chem-milled aluminum plate and aluminum sheet.

Two such assemblies, shown in Figure 2.2-6, make upone spacecraft set of primary

gravity-gradient boom equipment.

2.2. 1.4. 7 Damper Boom Units (Secondary Boom Unit)

Each ATS boom subsystem requires one damper boom unit to be mounted on the damper

borne platform and to act as a gravity anchor for the damper. The basic erectable boom

for this unit is the same as that described above (paragraph 2.2.1o 4. 1) for the primary

booms. The damper boom unit will extend two 45-foot long booms in diametrically

opposite directions from the damper axes of rotation and in a plane normal to the same.

The erection technique for this unit is the self erecting scheme. The ends of the booms

are fastened to that portion of the unit which remains at the damper axes. The two

storage spools, however, are each mounted in a section of the unit which is propelled

away from the damper axes as the strain energy in the stowed tape causes the tape to

unwind off of the spool. (see Figure 2.2-7).
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3. Clearancefor boomscissor travel (slots in solar array, etco)

4. Cushionsfor tip target or solar array

5. Alignmentwith spacecraft center of mass, center of pressure and satellite axes
(also requiring proper balanceof spacecraft CM& CP)

The location within the spacecraftvolume (item 1. above), clearancefor scissor travel
(item 2. above),andalignmentwith the spacecraft (item 5. above)havebeenthe subject
of negoitationsbetweenGeneralElectric andHughesAircraft Companyfor the past two
months. The followingagreementshavebeenreached:

1. The boompackageswill besymmetrically locatedaboutthe overall spacecraft
cg (presently locatedat Station22.5).

2. The boomswill extendin planesparallel to oneanother.

3. The boompackageswill be equidistantfrom andonoppositesides of a plane
passingothroughtheoverall spacecraft cg (at Station22.5) and makinganangleof 20.5 with satellite yaw/roll plane. The angular relationship of the boom
packageto this planewill be such that the center of gravity for eachboom
assemblywill lie in said plane. This angular relationship will be symmetrical.

4. The centerof pressure of the spacecraft body (not including booms)will be
balancedto be coincidentwith center of gravity of the spacecraftbody.

5. Slotswill beprovided in the solar array andother spacecraft equipmentwill be
locatedto accommodatethe scissor travel dilineated in paragraph 2.2.1.4. 3o

Figure 2.2-8 showsthe basic alignment andorientation details pertinent to this agreement.

Mountingattachmentsandtip target cushioningremain to be resolved. Thesetopics will
be the subject of meetingwith Hughes Aircraft Companypersonnel scheduledfor the
immediate future.

The interface drawing hasnot beensigned.

2.2.1.5.2 Sensor Interface

Since the gravity-gradient booms extend as much of 100 feet from the spacecraft they

enter the field of view of various sensors located on board. Since the presence of the

booms in the field of view of certain of the sensors might have deleterious effects on

sensor performance, an investigation was undertaken to determine the extent of the boom

transgression of sensor fields of view. In addition it is required that the TV camera

be able to "see" the tips of the booms over the full travel of possible boom tip excursion.

Accordingly, the following layouts were prepared:

1. Figure 2.2-9, a layout of TV field of view camera/boom intercepts,

2. Figure 2.2-10, a layout of R-FAttitude Sensor field of view/boom intercepts,

3. Figure 2.2-11, a polar coordinate plot of possible positions of the primary
booms within the field of view of the I/R reliable earth sensor.

Figure 2.2-9 was plotted for a primary boom plane located at Station 19.83 and TV

camera location also at Station 19.83. Current location of boom plane is Station 22.5 and

TV cameras at Station 19.5° This 3-inch displacement between camera lens and boom

location will have only a slight effect on the information presently in Figure 2.2-9. It
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Figure 2. 2-9. Gravity Gradient Boom/
TV Camera View Pattern
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wasdeterminedfrom this plot that for the camerafield of view lined with the satellite
axes, as shown,there is a slight risk that the tips of the boomwill beoutsidethe field
of view during the worst caseconditionof maximumscissor angleand maximumthermal
bending. However, a rotation (aboutthe lens centerline) of approximately 12° will
enablethe camera to "see" the boomtips at all times dueto diagonaleffect. This amount
of rotation is plannedfor TV camerainstallation.

Theplot in Figure 2.2-10 wasbasedon anR-F sensorlocation near the forward endof
the vehicle. This sensorhasbeenrecently relocatedandthe plot will needup-dating.

Figure 2.2-11 was generatedat the specific request andper the instructions of NASA-
GSFC. This plot and explanatorynoteswere delivered to NASA-GSFCasrequired. This
item will beup-datedwhenboomand sensorpositions are firm.

2.2.1.5.3 Power and Telemetry Subsystems Interface

The boom subsystem interfaces directly with the Power Control Unit (also supplied by GE).

Power and telemetry requirements have been defined by internal GE documentation° These

items will be reflected in the GE-HAC electrical/electronic interface reported in

paragraph 2.3.2.

2.2.1.6 Current Weight Status

The currently estimated weight for the total boom system (one satellite set) including the

primary boom system and the damper boom package is 58° 5 pounds.

2° 2.2 Test (Development)

The only testing underway to date is an evaluation test of bellows coupling being considered

for transmitting torque through the pressure shell of the drive unit. The test is being

conducted on bellows slightly different in configuration than that invisioned for final design

(due to availability of hardware). This test has demonstrated the feasibility of the basic

scheme. However, tests on more representative hardware are required.

2.2.3 Expected Activity Next Quarter

The following activity is planned for next quarter:

1. Issue final copy of specification and subcontractor work statement

2. Consummate subcontract

3. Issue final specification control drawings for all boom system hardware

4. Sign-off on spacecraft interface

5. Sub-component development testing of certain critical parts (gears, bearings,
booms, drive bellows, etc. )

6. Detail design and analysis in support of Stage HI drawing release

7° Issue Stage III release

8. Procure raw materials and purchased parts for engineering unit fabrication

9. Fabricate test special equipment (test tracks and straightness checker)
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10. Prepare test plans

11. Begin engineering unit fabrication

2.2° 4 Conclusions and Recommendations

The design of the boom system is progressing satisfactorily to date. It is felt that the

design as presently conceived can be developed into final hardware that will perform the

mission requirements with a high probability of success. The schedule constraints,

however, are very tight, and a concerted effort (possibly including overtime) is required

to meet the key events. Barring any changes in requirements redirection of the course

down which the design is progressing, our objectives should be met within the present

schedule and planned funding.
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2.3 Combination Passive Damper

2.3.1 Introduction

Two dampers, one a hysteresis damper and the other an eddy-current damper, are

combined with a clutching mechanism into a single package referred to as the Combina-

tion Passive Damper (CPD). These dampers (coupled to a damping boom) are alternately

operated during the Advanced Technology Satellite (ATS) mission to damp the vibrations

of those vehicles which utilize gravity gradient stabilization techniques. In addition to

providing damping torques, the CPD also must meet a requirement to restore the damper

boom to a "null" position with respect to the satellite. This restoring torque is provided

by a magnetic torsional restraint device incorporated in the eddy current damper system,

and by the torsion wire suspension (tendency to "untwist") in the hysteresis damper

system. Basic functions which must be incorporated in the CPD design and the associated

hardware to perform these functions are listed below:

Function

Damping

Torsional Restraint

Suspension

Clutching Mechanism

Boom Angle Detector

Contact Indicator to indicate
bottoming of EC damper

Temperature Indication

Mode Indicator

Caging for launch

Stops at + 45 ° rotation
extremes

Minimum dipole

Associated Component(s)

Hysteresis Disc & Magnets
Eddy Current Disc & Magnets

Torsion Wire (Hysteresis Damper)
Magnetic T.R. (EC Damper)

Torsion Wire (Hysteresis Damper)
Diamagnetic Cones & Magnets (EC Damper)

Actuator, bell cranks, aligning cam faces, etc.

Optical Device

Not established

Thermocouples

Not established

Pyrotechnic Device

Hard stop - rod bending absorbs energy without
failure

Outer cover of Mu-Metal or similar material

2.3.2 Design and Analysis

2.3.2.1 General

During the first six weeks of the reporting period (Program Definition Phase), a study

(including laboratory tests) was performed to evaluate two possible suspension systems:

diamagnetic suspension and torsion wire suspension, which could be utilized with the

eddy-current damper. The results of this study were published in GE Document No.

64SD4326, Evaluation of Suspension System for the Eddy-Current Damper, Combination

Passive Damper, Advanced Technology Satellite, dated 5 August 1964.
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Prior to receiving a firm decision on ll September 1964 from the NASA to utilize dia-

magnetic suspension for the eddy current damper, the conceptual design effort was split

by the necessity to consider both types of suspension, diamagnetic suspension versus

torsion wire suspension, in each concept studied. Other problem areas which have re-

sulted in design iterations include:

1. In-orbit Thruster Effects on Damper Suspension

Efforts to provide sufficient "stiffness" in either damper suspension to pre-
vent bottoming under thruster loads proved impractical. Current design
philosophy is to allow the damper to bottom during this maneuver.

2. Interface with Hughes Aircraft Co.

The CPD envelope and location on the vehicle structure has not been finalized.
The original envelope was 10 inches in diameter and 14 inches long. Latest
(September 22, 1964) HAC recommendation reduced the length of the envelope
and drastically reduced utilization of "corner" areas as shown in Figure 2.3-1.
Current concepts are in process of being revised in an attempt to meet HAC
envelope recommendations.

3. Systems Requirements

CPD loads criteria and damping requirements have not been firmly established.
Preliminary conservative load requirements (as shown in Figure 2.3. -2)

Stage III drawing release.
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Figure 2. 3-1. Combination Passive Damper Envelope History
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Figure 2. 3-2.

+ 50 DYNES

Preliminary Design Load Requirements

4. Visit to Bell Telephone Labs

This visit was delayed until 25 September by NASA request. Very useful
information relative to the hysteresis damper design and test program was
obtained during the visit.

2.3.2.1.1 Conceptual Design Progress

Twelve basically different concepts have been carried through layout stage to date with

several intermediate variations. Four of these concepts were included in GE Document

No. 64SD4326 which was published at the end of the six weeks Program Definition phase.

On 12 August, a design meeting was held at GE, and two concepts were selected for

further study. Refinement of these two concepts (considering both possible suspensions

for the eddy current damper) continued until the decision was reached on 11 September
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to use diamagnetic suspension. At approximately the same time, one of the two original

concepts utilizing a magnetic clutching principle was discontinued because of magnetic

interaction and the difficulties encountered when an attempt was made to replace the

magnetic clutch principle with mechanical latches. The remaining original concept has

been refined into the current proposed design (Figure 2.3-3) after several iterations.

Another concept (Figure 2.3-4) was developed in the interim, but because of its com-

plexity and questionable reliability in a space environment, it is now considered as a

back-up version. The configuration shown is not up to date due to an increase in the number

of magnets required in the diamagnetic suspension system and a required redesign in the

boom shaft area to accommodate the additional magnets would enlarge the envelope con-

siderably. Work has been discontinued on this concept and all effort is being applied to

the concept shown in Figure 2.3-3.

The major problemin all concepts has been the clutching mechanism, which, to fulfill

the following requirements, becomes quite complex:

Requirement Component

• °

Device to connect boom to
the desired damper and
provide force and moment
reactions

Rotating member (bellcrank, lever, etc. )

Device to align damper
index points with boom
position at time of clutching

Free + 45 ° boom rotation
when damper engaged

Aligning cam faces on each damper

No part can induce friction

Clutching capability at any
point within + 45 ° boom
rotation range

Strike, ciutch, release action mandatory

2.3.2.1.2 Boom Angle Detector

The boom angle detector has presented a major problem as indicated by the fact that only

three out of twenty-three potential vendors responded to the preliminary RFQ. The dif-

ficulty is the excursion of the boom in three planes, i.e., the boom shaft "floats" and is

neither concentric nor fixed during operation with a damper. This makes it extremely

difficult for an indicating device to differentiate pure rotation from the translatory move-

ments. The requirements for no friction (thus no direct attachment can be used) and no

magnetic devices further complicate the design. A specification (SVS 7315) and a work

statement (No. 9744-WS-005) were released on 26 September to three potential vendors

for a final bid on the boom angle detector.

The general requirement for the angle detector is that it shall provide a continuous signal

that is proportional to the angular displacement of the boom with respect to the CPD

package within an accuracy of + 1 degree for a boom rotation of + 10 degrees about null,

and ± 10 percent in the range of + 10 degrees to + 40 degrees about null. Originally, it

2-123/2-124



i

t

r_

mL
i

i
i

/



•-,,"- A

Figure 2.3-3.
Damper for ATS

Combination Passive

2-125/2-126



........., f

5K 5G,I_>O-808-II

Figure 2. 3-4. Combination Passive

Damper Details

2= 127/2= 128



was thought that an off-the-shelf item with the trade name "Optisyn" could be modified

to meet CPD requirements; however, investigation revealed that the "Optisyn" as cur-

rently available is not frictionless, and will not allow axial, radial, and cocking motions

of the magnitude encountered in the CPD. Therefore, extensive development work would

be required, and the "Optisyn" manufacturer is quoting on a system which, in their

opinion, is more suitable and less expensive for the CPD application.

2.3.2. I.3 CPD Description and Operation

Figure 2.3-3 represents the current configuration of the Combination Passive Damper

(CPD) with numbered component parts as an aid to the description presented below. This

configuration is in the preliminary design stage and may change considerably in detail,

but it shows the basic concept. Components of the CPD which are attached to basic

structure @ include the torque motor _, the magnets of the diamagnetic suspension

system _, the supporting leaf springs of the hysteresis damper suspension/torsion

wires Q, the magnet assembly of the hysteresis damper _, the eddy current damper

magnets O, the eddy-current damper torsional restraint magnets _, the hysteresis

damperstoprings® and®, theeddycurrentdamperstoprings® and@, and
the boom angle detector heads _.

The freely rotating and suspended portions of the hysteresis damper consist of the damper

body @ containing the ferromagnetic damping disc @,the aligning cam _, and

secondary support cam _ and _ .

The rotating and suspended parts of the eddy-current damper consist of the damper

frame _ to which is attached the diamagnetic cones _, damper disc _, torsional

restraint cylindrical segment _, the aligning cam @ , and the secondary support

® @
The boom shaft and switching assembly consists of the boom attach plate @, boom

in-orbit lock housing @, switching shaft pedestal _ which includes the boom angle

detector disc _, switching levers @ and @, overcenter spring @, synchronizing

gear segments @ and switching lever @ . The switching levers are composed of

rollers @ and @, and extensions _. A shifting rod @ is engaged to screw

jack or other device to convert rotary motion to longitudinal motion _. The end of

the shifting rod @ is spool shaped with button ends @ and @ which actuate the

switching lever @ during switching. Attached to the lower portion of the switching rod

and moving with it is a cammed cylinder @ which operates in-orbit boom lock levers

and _ ; these are pivoted on the fixed structure motor mount @.

Assuming the boom is initially attached to the hysteresis damper, a description of the

switching operation follows:

Torque motor Q is actuated which, acting through jack screw _ , actuates the shifting

rod _ upward. Cammed cylinder @ immediately rotates boom lock levers

and @ to clamp the flange of the boom longitudinally and rotationally. Further longi-

tudinal movement of the shifting rod causes the switching lever @ to contact button
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which rotates switching lever _ counterclockwise. The geared connection _ causes

switching lever _ to rotate clockwise simultaneously. At a point in this rotation, the

toggle spring _ goes over center imparting a counterclockwise force to lever

whose roller _ has, by this time, contacted the eddy current damper aligning cam (_

and started aligning the damper to the arbitrary boom position (anywhere within the + 45 °

rotation range). Roller _ that has left the hysteresis damper aligning cam _ and

extension _ is approaching the (eddy current) secondary support cam _ . Lever

is performing the same motions during this time in an opposite hand manner. As

the rollers _ and _ seek the center of cam _, the shift rod _ continues

its upward motion until switching lever _ floats freely between the button ends

and _ and cam _ has released boom locking levers _ and _ from the boom

housing _. Switching is thus completed; the boom is attached at four points _ ,

_, _, and _ to, and is restrained rotationally by, the eddy current damper.

The hysteresis damper returns to its "null" position through the action of the torsion

wire. To switch back to the hysteresis damper, the motor (_) reverses and moves the

shifting rod _ downward.

A preliminary boom and eddy-current damper caging device is indicated _ and a

magnetic shield _ envelope is also shown in Figure 2.3-3. However, further

design effort is necessary to define these areas.

Because of the back-up nature of the concept shown in Figure 2.3-4, a complete descrip-

tion is considered superfluous for this report. However, the basic operating cycle con-

sists of a counterclockwise rotation of the turret through approximately 110 degrees

(refer to View C-C in Figure 2.3-4). At this point, both dampers are engaged. The

turret is then a reversed (clockwise rotation) back to its starting position. The damper

levers are actuated during the cycle by "ball point pen" type plungers mounted on the

turret. At the end of the counterclockwise rotation, these plungers are reversed by

contact with a cam mounted on the structure. Thus the plungers alternately contact and/

or clear their respective damper levers during each half cycle. A feature of this design

is that it provides in-orbit caging of the boom and both dampers at the end of the counter-

clockwise rotation by simply stopping the motor at this point.

2.3.2.1.4 Design Analysis of Diamagnetic Suspension of the Eddy-Current Damper

2.3.2.1.4. 1 Basis for Utilizing Diamagnetic Suspension

To support the eddy-current damper, it has been decided to use a truly frictionless sus-

pension system - diamagnetic suspension. It has been shown by Maxwell, Jeans, and

Tonks, based on the work of Samuel Earnshaw, [hat a stable suspension system which

uses only passive magnetic elements (such as permanent magnets) can be obtained only

if the elements being acted upon by the magnets have a permeability of less than unity

(i. e., negative susceptibility). Some types of active control (with sensors, feedback,

etc. ) must be used if a stable suspension is to be obtained with elements having a

permeability of greater than unity (i. e., paramagnetic or ferromagnetic materials which

have positive susceptibility).
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2.3.2. I. 4. 2 Selection of Materials

The force acting on a body placed in a magnetic field is discussed in paragraph 2. 3.2. 1.4. 5

(Analytical Approach). In these equations, it is shown that the force is directly propor-

tional to the susceptibility of the material which is being acted upon. Diamagnetic materials

with their negative susceptibility are repelled by a magnetic field. Many materials are

slightly diamagnetic, but those having the largest negative susceptibilities (and thus

capable of the largest repulsion forces) are bismuth and pyrolytic graphite. The volume

susceptibility of bismuth is -13 x 10 -6 and that of pyrolytic graphite perpendicular to

the deposition plane is approximately -47 x 10 -6. Thus, the actual susceptibility realizable

for support forces depends upon the configuration of the magnetic field and itsrelation-

ship to the graphite in the field.

Bismuth was used by General Electric in early experiments on diamagnetics and was

subsequently used in the construction of the PODS damper because of ready availability

and ease of manufacture. Since that time, pyrolytic graphite has become more generally

available and its various physical properties more accurately defined. Graphite has

the advantage of a density which is only 22.5% of that for bismuth. Therefore, in the

interest of obtaining maximum suspension capability with minimum weight, pyrolytic

graphite will be used in the suspension of the eddy current damper.

2.3.2. 1.4. 3 Suspension Loads

As indicated above in paragraph 2.3.2, preliminary external load requirements have

been established for the design of the CPD. These loads are exerted by the damper boom

on the damper rotor and are caused by external forces such as inertial effects and solar

pressure. Both the diamagnetic suspension for the eddy current damper and the wire

suspension for the hysteresis damper must be able to withstand these forces. However,

the diamagnetic suspension must be capable of supporting not only these external loads,

but also an internal load - the "lateral force" from the magnetic torsional restraint.

This lateral force of attraction varies with displacement from null, and has been measured

to be about 10,000 dynes per inch, or +- 600 dynes for + 0. 060 inch displacement. These

loads on the diamagnetic suspension are summarized below:

Symbol

P
r

P
a

Q

Load

External Radial Force

External Axial Force

External Cocking Torque

W Internal Radial Lateral Force

Magnitude

+ 100 dynes

+ 50 dynes

+ 2500 dynes-cm

+ 600 dynes

Any combination of these loads can be supported by two radial diamagnetic reaction forces

of 500 dynes, separated by 8 inches - such as is planned for the conceptual design of the
CPD.

2.3.2. 1.4.4 Diamagnetic Forces

In order to determine the optimum suspension design, considering the type and quantity
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of magnets, material of diamagneticrotor, coneangleandthickness of diamagneticrotor,
andair gapspacing, it is necessaryto knowthe repulsion force versus air gap charac-
teristic for a single magnetin combinationwith the diamagneticmaterial. Thesechar-
acteristics havebeenobtainedfor a _ariety of magnetsin combinationwith bothbismuth
andpyrolytic graphite in a variety of thicknesses. These results havebeenobtainedex-
perimentally bydirect measurementof forces, andalso analytically, basedonmeasure-
mentof the magneticfield pattern for a givenmagnet.

2.3.2.1.4, 5 Analytical Approach

The force exerted on a diamagnetic speciment (see Figure 2.3.1-5) in a non-uniform

field may be expressed as follows:

2

__ dH dv (1)dF = K si2g--

where F = force, dynes

K = volumetric susceptibility of the specimen, cgs units/cu cm

H = field strength, oersteds

v = volume of specimen, cu cm

s = distance from pole face, cm.

HF

. --- t - _ T .............. ]" -----IV

I ,h ' _ T = SPECIMEN
-- " l -I-LJ i I I

,_ L__._ ! . i ........ ,__ - -J-_[ THICKNESS,

/. _" = GAP, CM

dz -/

Figure 2.3-5.

CM

Force on Diamagnetic Specimen in Non-Uniform Field

The field strength was measured as a function of distance from the pole face for several

magnets. When values for H 2 were plotted against s, it was found that a decaying

exponential curve gave a very close approximation of the measured data.

where
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H 2 = H 2 e-mS
o

H = field strength at s = o
o

-H 2 m = initial slope, oersted2/cm
o

-1
m = decay rate, cm

dH 2 = -H 2 m e -mso (2)
ds



A simplifying approximationwasmadeby assumingthat the samevalue of dH2/ds exists
for a givenvalue of s, at points betweena andb, whichdefine the effective poleface area.
It was further assumed(basedonanalysis of extensivetest data)that the effective pole
face area equals1.8 times the actual pole facearea. The differential volumefor both
poles, dv, may thenbe expressedas follows:

where

dv = 2xl. 8Ads

A = actual pole face area, sq cm

(3)

The total force on specimen, from both magnet poles, is obtained by combining

Equations 1 and 3:

dF = 1 K 2
-'2-- (-Ho

By integration,

m e -ms ) (2xl. 8Ads)

g+T

/ , 2 /F = dF = --2-K H° m (2) (1.8) A e -ms ds

g

A  o2m +"
2[ ]= -1.8 AK H o e-m(g + T) _e-mg

[ _rot ] -m_

= -I. 8 AK Ho- [e .... -lj e -

F = 1.8AKHo2 (i - e-mT) e-rag (4)

F = F e-m_=
0

Equation 4 expresses the force between one magnet and a speciment in a non-uniform

field. If the specimen is diamagnetic, the susceptibility, K, is negative, and the force

is repulsive. The factor (1 - e -roT) shows the dependence of force on the thickness, T,

of the specimen. The force is seen to decay exponentially with air gap, g.

2.3.2.1.4.6 Experimental Approach

For the many measurements which have been made of force versus air gap, it has been found

possible to fit a decaying exponential characteristic to the measured data. This charac-

teristic to the measured data. This characteristic is of the following form:

F = a + Foe-mg (5)
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This form differs from the analytical result only by the constant term, a.

2.3.2.1.4.7 Diamagnetic Suspension Design Equations

The diamagnetic suspension consists of a conical diamagnetic element located at each

end of the rotor, and a ring of n magnets fixed to the stator, equally spaced around the

diamagnetic cone, as shown schematically in Figure 2.3-6.

//-- OIAMAGNETIC CONE I

/_ N MAGNETS (FiXED'_ !

j I
/3 // I

N MAGNETS (FrXEE))

_o DPAMAGNETI_C CONE

Figure 2.3-6. Diamagnetic Suspension Schematic

The diamagnetic forces tend to keep the rotor centered in the null position. The general

shape of the force versus displacement characteristic of a diamagnetic suspension has

been shown both analytically and experimentally to have the non-linear form of Figure

2.3-7.

For component design purposes, a linear approximation may be used, as follows:

F = -K x

where F = restoring force

x = displacement from null

K = slope of the actual characteristic at null point.
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1

DISPLAC EMENT

FROM NULL

Figure 2.3-7. Diamagnetic Suspension Characteristic

The value of K represents the force gradient, or stiffness, of the suspension at the null

position. Since the stiffness actually increases with displacement, use of the linear

approximation yields a properly conservative design.

The radial force gradient at the null point of a diamagnetic suspension has been found to

be as follows:

Kr = r-dif-dPr] r = o = F°m e-mg° n__2c°s2fl (6)

where F o e -mg can be determined from the equation F = a + F o e -mg which

expresses the single magnet force versus gap characteristic, and the symbols are as

previously defined. This expression represents the stiffness due to one diamagnetic

cone and n magnets. The total force capacity at that end of the rotor is found by

multiplying Kr by the radial displacement at that end.

Similarly, the axial force gradient at the null point of a diamagnetic suspension has been

found to be as follows:

dP_] = Fo me-mgo n sin2Kz = p (7)

-- 0

This expression represents the axial stiffness at each end of the suspension. The total

axial force gradient due to both ends of the suspension is 2K Z. The total axial force

capacity is found by multiplying 2Kz by the axial displacement of the rotor.

2.3.2.1.4.8 Sample Calculation

Determine the suspension characteristics for a design which uses 12 magnets (Type CU-

506) at each end, and a pyrolytic graphite cone ( _ = 20 °) which is 0.25 inch thick. The

initial air gap, go' is set at 0. 060 inch = 0. 15 centimeter. The single-magnet force
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characteristics for a CU-506magnetin combinationwith 0.25 inch pyrolytic graphite
was foundexperimentally to be as follows:

where

and

F = 15+ 335 e -4"4g

F = force, dynes

g = gap, centimeters

a = 15 dynes

F° = 335 dynes
-1

m = 4.4cm

These values are substituted into Equation (6) to determine the radial stiffness at each

end of the rotor:

K = (335) (4. 4) e -4"4(0" 15) 1_2 cos 2 20 °
r 2

Kr = 4040 dynes/cm.

H the load on the suspension at each end is 500 dynes, then the radial displacement at

each end will be

Pr
r -

Kr

500r - - 0. 124 cm
4040

or 0. 049 inches.

This is well within the 0. 060-inch initial air gap, indicating that this particular design

will support the specified load of 500 dynes at each end of the suspension. As a check

for axial support, the axial displacement will be calculated for the specified 50 dyne

load. From Equation (7), the axial stiffness at each end is as follows:

Kz = (335) (4.4)e -4"4(0" 15) (12) sin 2 20 °

K_ = 1070 dynes/cm each end

The total axial stiffness = 2K_

= 2140 dynes/cm.
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50
Under the specified axial load of 50 dynes, the rotor will displace - 0. 0234 cm

2140
or 0. 009 inch.

Thus, the given design will support all combinations of the originally specified loads;

i.e. +100 dynes external radial force, +56 dynes external axial force, +2500 dyne-cm

external cocking torque, and +600 dynes internal radial lateral force from the magnetic

torsional restraint.

It is also important that the total radial force gradient from both ends be greater than the

radial force gradient of the magnetic torsional restraint, which is given as 10, 000 dynes

per inch, or 3930 dynes per centimeter. This criterion is more than satisfied, as the

total radial stiffness of this design is 2(4040) = 8080 dynes per centimeter.

2.3.2.2 Development Testing

2.3.2.2.1 Torsional Restraint

During the first six weeks of this quarterly report period, a major portion of the develop-

ment engineering effort on the Combination Passive Damper was spent in establishing

the feasibility and practicability of the magnetic torsional restraint element for the

eddy-current damper. The results of this work are reported in General Electric

Document No. 64SD4326, which has previously been submitted to the Goddard Space

Flight Center but is summarized here for convenience.

In these tests, the desired torsional restraint (i. e., the apparent spring constant)

obtained from the ferromagnetic torquing member as well as the accompanying (but

undesired) lateral force were determined. These characteristics were measured as a

function of:

1. Presence or absence of pole pieces

2. Gap length

3. Flux density

4. Misalignment (tilting) of torsional restraint element

It was concluded from the results of these tests that:

1. Torsional and lateral forces are approximately proportional to flux density

2. The ratio of the lateral force to torsional force is independent of flux density

3. Pole pieces reduce the ratio of lateral force to torsional force

4. Larger air gaps produce less lateral force and a smaller ratio of lateral force

to torsional force.

5. Tilting the torsional member with respect to the imposed magnetic field had

little effect on the torsional force.

It was also found in these tests that it is practical, within the expected physical limitations

of the CPD package, to provide a ferromagnetic torsional restraint element which will

have the required effective spring constant that is linear over the required +45 ° travel

of the damper. The element is a relatively simple geometric shape (crescent or
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variation thereof) which should cause no fabrication problems. The development effort

established that Type 302 stainless steel, which had been suitably cold worked, was the

optimum material to use for the torsional element.

Therefore, it was concluded that a torsional restraint member could be designed that

would supply the proper spring constant and could be supported by the diamagnetic

suspension system planned for the eddy-current damper.

2.3.2.2.2 Mechanical Hysteresis Loss of Torsion Wire Suspension

In considering the techniques which might be utilized to support the eddy-current damper,

a torsion wire suspension is an obvious candidate. However, the inherent hysteresis

loss present in a torsion wire suspension could mask the damping effects obtainable

from the eddy-current damper if this loss were large enough. During the first six weeks

effort, the relative magnitude of this loss was evaluated and the results also reported

in General Electric Document No. 64SD4326. It was concluded in the report that with

the torsion wires required for the eddy-current damper in this application, the mechan-

ical hysteresis loss would be less than 1% of the required eddy-current damping.

Although such a suspension would be practical, it has been decided because of other

considerations to utilize a diamagnetic suspension for the eddy-current damper.

2.3.2.2.3 Hysteresis Damper

Tests to permit evaluation of some of the operating characteristics of the hysteresis

damper were initiated during the reporting period. In these tests, a simplified arrange-

ment (shown in Figure 2.3.1-8) of a hysteresis damper utilizing an annular disc of cold

rolled steel attached to a weighted plastic disc was suspended above a rate table by a

long torsion wire. The torsion wire and rate table were so located that their respective

axes were collinear. A total of three discs were tested with thicknesses of . 0001, . 002,

and. 004 inch. A magnet was attached to the rotating table top and placed so that the

damping disc was between the North and South pole of the combined magnet arrangement.

When the table was driven at very low speeds, it was observed that, as soon as the

magnet started rotating, the disc became "locked" on to it. This observation was

somewhat different from the results reported by the Bell Telephone Laboratories (BTL)

where a lag of about 8 degrees was noted before "lock-on" occurred. Subsequent

discussions with BTL revealed that the apparent contradiction existed because of a

difference in flux paths in the two arrangements. In GE's test set up, the path of the

flux is through the disc and at a right angle to the disc. Because of a different magnet

arrangement, BTL caused the flux to enter at one point on the magnetic disc, pass

longitudinally around its periphery for 180 ° and then emerge to the other pole of the

magnet. Thus, in the BTL design, approximately 8 degrees was required to cause the

induced poles in the magnetic disc to switch and develop full damping torque.

Because of the flux path in the GE tests, pole switching occurred immediately and no

O was observed.

However, in the GE test set up it was noted that the damping disc would smoothly follow

the magnet for about 20 ° - 30 ° , at which point the coupling torque would drop markedly

and the rotor "slip" back some 20 ° . While the subsequent discussions with BTL did not
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Figure 2. 3-8. Simplified Hysteresis Damper

result in any clear-cut, definitive decision as to the cause of this "cogging" effect, it

was concluded that the flux path of GE test set-up made the damping torque more

sensitive to minute, localized variations in the magnetic properties of the damping disc.

BTL has noted similar effects in some of their early testing but not to the large degree

observed by GE.

It should be pointed out that one of the more valuable elements of the work on the

hysteresis damper performed during this period was the visit and discussion with the

engineers at the Bell Telephone Laboratories. They were extremely helpful in discus-

sing with GE engineers their problems and the solutions they had achieved during their

development activity on the hysteresis damper. It is felt that this contact will result

in a much more efficient development program for the hysteresis damper.

To continue the development effort on the hysteresis damper, two pieces of test equip-

ment were designed during the period of this report and are now being fabricated by the

Manufacturing Operation. One piece of equipment has been designed to permit a
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hysteresis damper (which is essentially identical to the damping elements of the BTL

unit) to be placed on a rate table and its damping characteristics evaluated. This unit

can then be utilized to evaluate the magnet and disc configuration required to meet the

damping requirements of ATS (which are of much less magnitude than those for which

the original BTL damper was designed). The second piece of engineering test equipment

is to permit exploratory tests on means of attachment to the torsion wire suspension.

It will also be used to:

1. Measure fatigue life of various attachment means and of several configurations

of torsion wire

Measure the spring rates obtained from various torsion wires.

3.

2.3.2.2.4

The effect of wire tension on torsion rates.

Eddy Current Damper

The damping coefficient of an eddy-current damper may be expressed as follows:

B 2 = K _B2D 2

where b = damping coefficient (torque/angular velocity)

K = proportionality constant

= electrical conductivity of damper disc material

B = flux density through disc

D = distance of magnet from axis of rotation

= number of magnets

From this equation the fruitful areas for application of development engineering effort

can be identified. Each factor will be discussed in turn to illustrate its effect on the

damper design. As in all equations of this type, the proportionality constant assures

dimensional compatability, is independent of these factors, and is fixed. The diameter

of the circle at which the magnets are placed is limited by the physical demensions

allowed for the package. In the physical design of the CPD, the eddy-current magnets

are placed at the maximum radius possible which is outside of all other functional

elements of the package. It is planned to use only two pairs of magnets for this damper

because of physical constraints on the mechanical design of the CPD.

The electrical conductivity of the disc is affected by the:

1. Material used in its construction

2. Thickness of the disc

3. Configuration of the return path for the eddy-current generated in the disc.

As will be discussed later, the present design can utilize an aluminum disc and still

provide adequate damping torque. Increasing the thickness of the disc increases its

conductivity but also reduces the flux density obtainable from a given magnet. Since

thickness directly affects conductivity, and damping is proportional to the square of

flux density, a tradeoff evaluation is necessary before the thickness can be chosen for the
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final design. It has been found that if the magnets are placed too clese to the edge of the

damper disc, the conductivity of the return path for the eddy-current in the disc is too

low. Therefore, care will be taken to assure adequate clearance from the magnet to the

edge of the disc.

The remaining factor, flux density, has been the object of considerable engineering effort

during the report period. Measurements have been made of the total flux and the flux

density as a function of air gap. These measurements were made using a CU-507 magnet,

the same magnet that was used in the damper built for the Passive Orientation and

Damping System (PODS) by General Electric in 1963. Tests were made to be certain

that the method used in charging the magnets resulted in maximum stored energy being

imparted to the magnet for every measurement point. The results of these flux tests

are shown m Figure 2.3-9 and 2.3-10 where flux density is plotted as a function of

air gap and for various magnetic circuit configurations. Since flux density is a parameter

which is difficult to measure accurately, the data plotted in Figure 2.3-9 was taken

to establish the general validity of the data, at least on a comparative basis. Flux

density was determined for this plot both by measuring the total flux in the air gap and

by using a different instrument which actually indicates flux density. It can be seen

that although the curves are not coincidental they have the same general shape. It was

found that the flux desity increased inversely as the square root of the gap length.

Measurements were also made of the effect of various types of pole pieces as shown in

Figure 2.3-10. The flux density followed the same shape shown in Figure 2.3-9 and it

was found that there is some increase in flux density due to tapered pole pieces.

The real measure of the value of various configurations is the change in damping torques

obtained. A test set up similiar to that shown in Figure 2.3-8 (modified as indicated)

was used to evaluate the effects of various configurations with a copper disc approximately

6 inches in diameter substituted for the plastic disc of the hysteresis test. The results

of these tests are tabulated in Table 2.3-1. A comparison of the tests: 1 and 2, 1 and 4,

5 and 6, and 5 and 7 is inconclusive as to the merit of poie pieces. Additional tests

are planned to determine why such tests do not demonstrate the advantage of pole pieces

that theoretically should be present. Figure 2.3-11 depicts the arrangement of magnets

used for the single penetrations and double penetration referred to in Table 2.3-1. A

comparison of Tests 5 and 10 indicates the twofold increase obtained with the double

penetration configuration. Tests 10 and 13 indicate the gain achievable by reducing the

air gap.

The system requirement for damping torque from the eddy-current damper is approxi-

mately 1,560,000 dyne-cm-seconds. To achieve this value, various techniques must be

utilized to increase the torque obtained in Test 13. The basic equation given above for

eddy-current damping will be examined to determine'the feasibility of reaching the design

value.

In comparing the damping torque of the test damper (bt) to that of the actual design (bd) ,

a slight modification of the basic damping equation is used:
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SINGLE PENETRATION

!

DOUBLE PENETRATION

Figure 2. 3-11:. Magnetic Arrangement for Single and Double Penetration

where: subscript "d" refers to design values, subscript "t" refers to test values

p = resistivity of damper disc

t = thic.__.essof _damper disc

and other symbols are as used previously•

TABLE 2.3-1 DAMPING TORQUE OF EDDY CURRENT DAMPER

TEST CONSTANTS: 1. All Magnets CU 507

2. .125 in. Copper Disc, 5.85 in. dia.

Test No.

1

2

Magnet Arrangement

2 single penetrations

2 single penetrations

Air Gap
(in.)

.25

•25

Pole Pieces

No ne

1 1_I_ only,

Radius

(in.)

2.06

2.06

Percentage indicates ratio of area of pole piece face as compared to

magnet face area

Damping
Constant

Dyne-cm-
sec

218,000

222,000
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Test No

5

6

7

8

9

10

11

12

13

TABLE 2.3-1. DAMPING TORQUE OF EDDY CURRENT DAMPER
(Continued)

Magnet Arrangement

2 single penetrations

1 single penetration

1 aingle penetration

1 single penetration

1 single penetration

1 single penetration

1 double penetration

1 single penetration

1 single penetration

1 double penetration

Air Gap
(in.)

.25

.25

.25

• 25

• 25

.25

.25

.195

.195

• 195

Pole Pieces

2 Mags each
50%

None

Yes-56_ area

Yes-80% area

Yes-80% area

Yes-80% area

None

None

None

None

Radius

(in.)

2.06

2.06

2.06

2.06

2.31

2.56

2.00

2.31

2.31

2.31

Damping
Constant

Dyne-cm-

i sec

209,000

105,400

98,000

Ii0, 000

III, 000

89,500

228,000

171,000

142,000

336,000

Then the following factors may be used to determine how the required damping may be

achieved in the design of the CPD:

Dd 4
- - 2 (measurement of parts)

D t 2

Bd 5000

B 4500
t

- i.ii (flux measurement indicates some improvement

in design)

D t

P
d

(ratio of resistivity of copper to aluminum)

_d 4

_t 2

- 2 (design)

td .100
-- -- -- 8

t .125
t

.'. bd

(measurement of discs used or to be used)

= 336,000x22xl. ll 2x.6x2°0x.8

= 1,600,000 dyne-cm-seconds

Thus itcan be seen that the calculated damping is only slightly higher than the actual

damping required. However, there are still several changes available which can provide

a greater margin, if it is found to be necessary: (I) the design diameter may be made as

much as 25% larger; (2) pole pieces may prove to provide somewhat more flux density;
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(3) the disc could be made of copper and accept the penalty of slightly higher weight; 
(4) a more optimum disc thickness may be found considering the thickness effect on €lux 
density and resistance of the disc. Therefore, it is concluded that the required eddy- 
current damping is feasible within the presently defined envelope. 

2.3.2.2. 5 Diamagnetic Susuension 

A s  indicated in paragraph 2.3.2.1.4.2 (Selection of Materials), the actual susceptibility 
of graphite is difficult to define accurately and, more pointedly, it  is not possible to 
determine the suspension capabilities of the graphite-magnet system f rom pure theoretical 
analysis. Therefore, a number of samples of graphite have been obtained from various 
vendors and measurements of force available have been made during this reporting period. 
Since the force available from an  assembled bismuth suspension system is known from 
the PODS damper, measurements were made on bismuth samples to provide a basis of 
reference for the tests performed. Two pieces of equipment have been used to make these 
measurements. In the method shown in Figure 2.3-12, the diamagnetic material  was 
mounted on a disc that was suspended from a torsion wire;  a test  magnet was secured to 
a rotating table placed under the disc so that its rotation was coaxial to the torsion wire. 
A light beam reflected from the disc onto a scale which could be seen behind the disc 
arrangement. This reflection was used as a measure of the rotation of the disc which, 
in turn, was a measure of the force being exerted upon the diamagnetic material  by the 
magnet. 

The other equipment utilized is the Low Order Force Fixture (LOFF) developed by the 
General Electric Company. The LOFF is shown s e t  up for measuring the diamagnetic 

Figure 2.3-12. Diamagnetic Suspension Test  Set-Up Using Bismuth Samples 
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force of the pyrolytic graphite system in Figure 2.3-13. Figure 2.3-14 shows an over-

all view of the LOFF as set up for a test run in 1963 on the POD_ damper. This picture

shows the general arrangement more clearly while Figure 2.3-13 shows the equipment

as set up for the force versus displacement measurements for diamagnetic material.

The LOFF utilizes a spherical gas bearing for supporting the weight of the element being

tested. The structure to which the air bearing is attached is mounted on a leveled eight-

inch thick stone plate which is supported by an angle-iron framework. The gas bearing

is rigidly attached to a horizontal arm and the test sample is attached to the end of the

arms. Beneath the arm, and concentric with the vertical axis of the gas bearing, is

fastened a calibrated torsion wire. A precision dividing head, mounted below the torsion

wire and under the stone slab, is attached to the wire which is passed through a hole

drilled in the slab. The dividing head imparts the required twist or torque to the wire.

Departures of 0. 001 inch of the arm from its horizontal null position can be detected by the

theodolite, which is positioned to observe lateral movements at the end of the arm.

In operation, the null position is established with the theodolite. A change of force is

applied to the end of the arm (in this case, by moving the magnet closer to the diamagnetic

material). The torsion wire is then twisted back so that end of the arm is again at null.

The amount of twist required can be translated into a change of torque. Knowing the

length of the torque arm at which the force is applied (i. e., the distance oi the magnet

from the vertical torsion wire) permits the calculation of the change of force applied to

the test sample. Test results achieved during the past two years of operation show that

the data is repeatably accurate to at least 0.25 dyne. The LOFF has been used to supple-

ment the simple torque wire mechanism because of its greater accuracy and to serve

as a check on the data taken. In practice, the simpler test device which was the torsion

wire support requires considerably less time for set up and data recording.

As indicated previous!y, several samples of pyrolytic graphite were tested for force

characteristics. The results of typical data have been plotted on Figure 2.3-15. On this

curve, it can be seen that there was a considerable increase in force available from the

graphite, although it was not nearly as large as would have been expected based on a

comparison of susceptibilities. For the 0. 125-inch thick samples, there was only a

change of 2:1 increase in force from the bismuth. The results of another test with a

different magnet (Figure 2.3-16) indicates an improvement of about 2.5:1 for the graphite.

However, for both magnets, an increase of about 4.5 to 1 is possible by increasing the

thickness of the graphite by a rate of about 3.1 to 1 so that a substantial increase in force

is available with graphite which because of its much lower density, would represent

a gain in force per unit weight.

The disparity between the theoretical and experimentally determined ratios of forces

available from graphite as compared to bismuth must be due to differences in suscepti-

bilities of the materials actually tested. Only one reference (Fishback) has given a value

for the susceptibility of pyrolytic graphite and discussions with vendors indicate that

there is a wide variation in some ot the physical properties between samples. During

the next period, it is planned to check representative samples of the graphite to determine

that the susceptibility available is adequate for the needs of the design. As indicated
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Figur 

Figure 2.3-13. Low Order Force Fixture for Evaluating Pyrolytic Graphite I 

1. Overall View of Low Order Force Fixture Tes, Set-Up 2.3- 
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Figure 2. 3-16. Torque Angle Characteristics Bismuth

and Various Thickness of Pyrolytic Graphite

below, the design requirements of the CPD for ATS can be met within the required envelope

utilizing materials having susceptibilities similar to that now available from vendors.

2.3.2.3 Expected Activity Next Quarter

1. Finalization of a preliminary design layout.

2. Fabrication of a working model of the clutching mechanism to check operation.

3. Laboratory tests to be performed:

a. Torsion wire selection tests

b. Eddy-current damping tests

c. Hysteresis damping tests

d. Magnetic torsion,,1 restraint tests

e. Magnet variables (gaps, strength, etc. )
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4. Detail design and structural analysis in support of Stage III drawing release.

5. Detail drawings of the engineering unit of the CPD will be prepared and

released (Stage III Release) for Manufacturing.

6. Raw materials and purchased parts will be procured.

7. Test procedures will be prepared.

_,. 3.3 Conclusions and Recommendations - CPD

Preliminary design and test efforts on the CPD are progressing satisfactorily. Early

integration and design problems on the CPD have been more numerous and more difficult

to resolve than had been foreseen; however, it is believed the CPD concept now proposed

can be developed to meet requirements within schedule.
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2.4 Attitude Sensor Subsystem

2.4.1 Subsystem Description

The Attitude Sensor Subsystem of the Gravity Gradient Stabilization System for the Advanced

Technological Satellite is described in detail in the Program Plan (Reference I). The plan

was compiled during the first six weeks of the contractual effort. A brief description is

presented here, however, with particular emphasis on those details which have been re-

defined.

The Attitude Sensor Subsystem consists of four attitude sensors built or procured by the

General Electrical Company, one or two sensors supplied by the National Aeronautics

and Space Agency on the 6000-mile orbit and 24 hour orbit flights, respectively, and the

power, command, control, and telemetry circuits associated with the entire Gravity

Gradient Stabilization System. The components be supplied for the 6000 mile orbit satellite

are listed below:

Two TV Cameras Subsystems
One Solar Aspect Sensor Subsystem
One Radio Frequency Attitude Sensor
One Power Control Unit

n_.-,,,_,_,._+.,,-,_ l_¢_,-fnr_ (C:h,_rt_rlv not vet defined)

In addition, the Goddard Space Flight Center of the National Aeronautics and Space Adminis-

tration will furnish to the General Electric Company, two Infrared Earth Sensors which will

then become incorporated into the Attitude Sensor Subsystem. On the 24 hour orbit flights,

only one TV Camera Subsystems will be flown and a Star Field Reader is to be supplied to

GE by NASA. Additional equipments proposed by the General Electric Company for use on

the _000 mile orbit flight include,

One Three-Axis Magnetometer
One Three-Axis Magnetic Torquing Coil
One Center of Pressure Displacement Boom

Although the boom is not part of the Attitude Sensor Subsystem, it is mentioned here

because the power, command, control and telemetry circuits associated with the Center

Displacement Boom are included of the Power Control Unit.

2.4.2 Power Control and Distribution

The functions of the previously defined Attitude Sensor Power Control Unit, Gravity Gradient

Booms Power Control Unit, and Interface Electronics have now been combined into one

package (Power Control Unit or PCU) for simplicity of design and to reduce the weight

taken by three separate chassis.

The Power Control Unit contains the command reception and driver circuits to operate

the boom motors, boom solenoids, damper squibs, damper motor, instrumentation and

attitude sensors. The five motors, four solenoids, and three squibs will operate from

individual power inputs off the spacecraft battery bus; whereas, the sensors and instrumen-

tation will operate from a single spacecraft quadrant power regulator.
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Two types of command circuits will be used: discrete and proportional. Discrete com-

mands will turn the attitude sensors either ON or OFF, operate the damper motor, fire

the squibs, operate the solenoids, and will be driven by a single command execute tone

pulse of somewhat arbitrary length.

Proportional commands will be used to extend and retract, expand and contract the gravity

gradient stabilization booms. In this type of control, power will be applied to the motors

only for the duration of the command execute tone, which may be preprogrammed at the

ground station in increments of 5 milliseconds and may be set to start at any given GMT

to within 10 seconds°

Both extension motors may be extended or retracted by a single command, and each motor

may be operated individually to compensate for any possible differences in the drive rates

of the two motors. The two scissor motors may be controlled in the same manner. The

PCU will provide current sensors for all four primary boom motors.

The PCU will also receive a periodic synchronizing pulse from either of the two telemetry

encoders (but not both simultaneously), will buffer and retransmit these pulses to both

the Solar Aspect Sensor and the RF Attitude Sensor to initiate their "Read" cycles. Seven

milliseconds after receipt of this "Read" signal, the SAS will present new attitude data

at its output terminals. Similarly the RFAS will present new data, approximately 0. 1

milliseconds after receipt of the "Read" signal.

Other circuits in the PCU will monitor the battery voltage, the regulated voltage, will

switch between the video outputs of the two TV Camera Subsystems, and will supply a

reduced operating voltage for the temperature sensors. Circuits are incorporated to

control or degauss the proposed Three-Axis Magnetic Torquing Coil.

A breadboard of the PCU is presently being constructed utilizing squib drive circuits, and

command decoder interface circuits suggested by the Hughes Aircraft Company. The dis-

crete command circuits will operate latching relays of a type which has been qualified for

satellite applications by the General Electric Company. To date no breadboard testing has

been performed.

Since the command and control circuits for the second TV Camera Subsystem will not be

required for the 24-hour orbit vehicle, these circuits will be used to operate the Star

Field Reader. The video switch used to alternately transmit data from the TV cameras

on the 6000-mile orbit flight will function between the single TV Camera and the Star Field

Reader on the 24-hour orbit flight.

2.4o 3 Solar Aspect Sensor

A preliminary specification was prepared for a Solar Aspect Sensor Subsystem and quotations

were requested from several potential suppliers. The only vendor to respond positively

was the Adcole Corporation, and therefore, they were requested to review their quotation

with respect to the requirement to use Hughes Aircraft Corporation (HAC) approved

parts and a revised component design specification, which included an operational transfer
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function relating an assigned maximum error to an external alignment surface. Calibration

of the sensor is thus referenced to a surface and marks which also will be used for align-

ment in the final configuration on the vehicle. A preliminary copy of the detector align-

ment drawing is shown in Figure 2.4-1.

Expressions for the values of the plane angles of measurement of the Solar Aspect Sensor

in terms of actual displacements on the measurements patterns were derived and are

presented in Appendix A. However, recent discussions with representatives of the Adocle

Corporation have revealed that cross coupling occurs between the two detector eyes in the

measurement of compound angles. The Solar Aspect Sensor with the one-half degree digital

increments is capable of measuring the angle to the sun with an accuracy of + 1/2 degree

only when the sun angle is in a plane normal to one of the detector axes. When compound

angles are measured, both of the orthogonally mounted detector eyes respond and the total

error compounds to a value larger than + 1/2 degree. The total error is thus a function of

the sun angle.

A preliminary thermal analysis was conducted, resulting in a specification on the operating

temperature limits for the Solar Aspector Sensor detectors, which are on the outside of the

spacecraft, of -70°C to +90°C. The range of the resistance thermometers to be attached

for the Solar Aspect Sensor to avoid triggering a false signals. Further details are included

in the revised General Electric Component Specification, SVS-7306, dated 25 September

1964.

2.4.4 RF Attitude Sensor

2.4.4. 1 Subsystem Requirements

The function of the RF Attitude Sensor is to measure the angle of arrival of an electro-

magnetic wave transmitted from the ground with respect to the boresight of the sensor.

The angle of arrival is determined by measuring this angle with respect to each of two

orthogonal axes which are perpendicular to the boresight; these axes are termed the "pitch"

and "roll" axes. Telemetry signals that are functionally related to the angles are then

transmitted to the ground, where computations are performed to determine the attitude of

the vehicle with respect to its local vertical. To perform these computations, information

from the various attitude sensors is required, as well as a knowledge of ground station

locations and vehicle position in orbit.

A preliminary design study has been conducted to establish the parameters and performance

of the RF Attitude Sensor; the detailed results of this study are embodied in a previously-

issued report. (1) In that report, a particular method of implementing the RF Attitude

Sensor was chosen to serve as a reference system. On the basis of this reference system,

specifications were established and a standard of comparison was set up against which

responses to the request for proposal could be measured.

1. See the Bibliography, Section 4.
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The RF Attitude Sensor will sense angles of arrival up to 25 degree off boresight. Over

this angular range, the angular measurement accuracy will be 1 degree rms. This includes

the effect of varying or random component parameters, up-link signal-to-noise ratio, and

telemetry quantization. The contribution of these factors to angular measurement accuracy

has been determined by analysis for the reference system; the results in Table 2.4-1 in-

dicate that the accuracy objective of 1 degree can be met.

TABLE 2.4-i. ESTIMATED RMS ACCURACY

Telemetry
(0. 2 quantization

error only)

Noise

Equipment error

0.08°atboresight

<< 0.2°

0. 5° at boresight
lo near _ = 15o

< 1° at _ = 25 °

The RF Attitude Sensor will operate in the 6 Gc/s band, and the sensor antennas will be

circularly polarized. A common design of the sensor will be employed for satellites in

either medium altitude or synchronous orbits.

Component design has been studied, and ithas been establishedthata feasibledesign can

be acheived employing printed Archimedean spiralantennas, striplinemicrowave circuits,

and solid-stateelectronics. Under these conditions,the dimensions ofthe RF Attitude

Sensor willbe approximately 6 by 6 by 6 inches, the weight willbe 8.5 pounds or less,

and the power consumption willbe 5 watts or less.

Interface requirements with vehicle subsystems and with the ground stations have also

been considered. It has been determined that the signal transmitted by the ground stations

will be CW. The signal frequency at the satellite will be within ± 150 kc of the non;hml

transmitted frequency in the 6 Gc/s band, including the effects of ground transmitter

stability and doppler shift. The power density at the satellite will lie in the range of 10 -7

to 10 -5 watts per square meter. The RF Attitude Sensor will be able to handle either linear

or right-hand circular polarization of the transmitted signal.

The RF Attitude Sensor will provide conditioned signals to the vehicle PCM telemetry system.

Provision for tdrning the RF Attitude Sensor on and off will be incorporated in the power sub-

system.

A detailed description of the specifications and conditions placed on the RF Attitude Sensor

is contained in the General Electric Subsystem Design Specification (SVS-7305), and the

Work Statement (9750-002WS) both dated 1 October 1964.

2.4. 4.I.1 Proposal Evaluation

Proposals covering the design and fabricationof the RF Attitude Sensor were submitted

by the followingsuppliers:

2-155



1. Radio Guidance Operation, General Electric Co., Utica, N.Y.

2. Re-entry Systems Dept., General Electric Co., Valley Forge, Pc.

3. Cubic Corp., San Diego, Calif.

4. Advanced Development Lab., Nashua, New Hampshire

5. Hughes Aircraft Co., E1 Segundo, Calif.

All proposals were evaluated technically by three independent teams of evaluators, the

Advanced Technological Laboratory and Electronics Laboratory of the General Electric

Company. Each proposal was evaluated on the basis of the following technical criteria:

1. Responsiveness to Work Statement

2. Design Concept

3. Analysis

4. Components

5. Test Program

2.4.4.1.2 Background and Experience

For every criterion, a numerical rating was assigned by each evaluator, according to

the following rating scale:

4

3 m

2

1 n

0

A written

chosen.

Exceeds requirements

Meets requirements

Very nearly meets requirements

Partially meets requirements

Fails to meet requirements

No reply

discussion was required of each evaluator to support the numerical rating

Since not all criteria were judged to be of equal importance, weighting factors were

applied to the numerical ratings. The analysis and test program discussions, in particular,

were regarded as important but somewhat less critical criteria than the other four.

Following this independent assessment of capability, the evaluators met to arrive at a

consensus on the relative technical ranking of the proposals. The Radio Guidance Opera-

tion (RGO)was ranked first among the suppliers on the basis of a technical approach that

avoided the critical sources of phase error that degrade accuracy, the completeness of

performance and reliability analysis, the use of state-of-the-art components, and the

completeness of the reliability program. In addition, RGO has extensive experience in

phase-measuring systems through the Mistram Program. Visits to inspect the engineering

and manufacturing facilities supported the choice of RGO as the supplier for the RF Attitude

Sensor. Design activity by RGO has just commenced. A functional description of the RGO

technical approach is given below in paragraph 2.4.4.3.

2.4.4.1.3 Technical Approach

The RF Attitude Sensor measures the angle of arrival at the satellite of an electromagnetic
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wavetransmitted from the ground. An antennaarray sensesthe phaseof the arriving
waveat eachof three elements in the array, where the elementsare arranged in an L-shaped
configuration. Pitch angle is to bederived from the phasedifference betweenthe central
elementandthe secondelement, while roll angle is to bederived from the phasedifference
betweenthe central elementandthe third element.

The three signals are initially processed in separatechannels. A pilot tone is combined
with each signal in the microwavecircuit precedingthe RF mixer. The purposeof the
pilot tone is to compensatefor phasedifferences in the three channels. Thepilot is offset
from the incomingsignalby a fixed audio frequency. Thepilot tone is generatedby phase-
locking a voltage-controlled oscillator (VCO)to the incomingsignal, andby multiplying the
VCOfrequencyto the proper microwaveband. A local oscillator signal is also generated
by multiplication of the VCOoutput.

In each of the three channels,the pilot toneand signal are translated to IF frequencies,
amplified, anddetectedin anenvelopedetector. Theaudio-frequencysignal at the detector
output containsthe phaseanglesensedby theantennaelement, but the phaseshift throughthe
first mixer andIF amplifier is eliminated in the envelopedetectionprocess.

Theaudio signals in the central channelanum t,,ep_tui,_i,,_.... 1 [_.... b-:c :* 2":::2 _'r:q:?="y

oscillator into a counter so that the count is proportional to the phase difference between the

central and the pitch antenna elements. The audio signals in the central and roll channels

are similarly processed. These binary counts are stored, and are read outto the telemetry

system upon receipt of read signals. This information is then telemetered to the ground.

Using this data, together with a knowledge of ground-station location, vehicle location in

orbit, and vehicle attitude information obtained from other sensors, the attitude of the ve-

hicle with respect to its local vertical can be computed.

The format of the signal transmitted from a ground station to the RF Attitude Sensor is CW,

at a frequency of 6.212094 Gc/s. The frequency as measured at the satellite will be within

± 150 kc of this nominal ground-transmitted frequency, as a result of doppler shift and

oscillator instability. The power density at the satellite will be 10 -7 to 10 -5 watts per

square meter, and the polarization is linear.

The electrical axes of the RF Attitude Sensor will be defined with respect to optical align-

ment axes, in roll, pitch, and yaw. The optical alignment will be accomplished by means

of a mirror containing suitable index marks, mounted on the surface containing the antennas,

as an integral part of the RF Attitude Sensor.

The requirements of Military Specification MIL-I-26600 will be used as a guide in determing

acceptable levels of interference and susceptability. To prevent mutual interference between

the RF Attitude Sensor and the 6.212 Gc/s communication transponder, the transponder will

be turned off when the RF Attitude Sensor is turned on, and vice versa. In addition, the RF

Attitude Sensor will incorporate filtering at the input to protect against any degradation in

performance as a result of 4 Gc/s transmission from the 6. 301 Gc/s transponder. The
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signal and power leads of the RF Attitude Sensor shall be filtered to protect against any

degradation in performance of the RF Attitude Sensor or of other components in the

sate llite.

2o4.4.2 Vehicle Attitude Determination

Formulations have been made of the equations required for computation of attitude angles

from on-board sensor measurements, with the following possible schemes:

1. Line-of-sight signal from one radio station, and on-board IR earth-sensor

2. Line-of-sight signal from one radio station, and on-board sun sensor

3. Line-of-sight signals received nearly simultaneously from two radio stations

4. Line-of-sight signals received from two radio stations and sun-sensor.

Systems 1 and 4 are completely deterministic; the other systems require resolution of

ambiguities by other means.

Complete formulations were made of error partials for insertion in error programs to

evaluate the accuracies of the various systems, for an equatorial-synchronous orbit

and for an inclined orbit. An expected range of attitude angles has been specified; maximum

probable measurement errors are also specified.

Thus far, the error program for System 1 has been programmed, with the angular position

of the satellite and of the radio station taken as independent parameters. Exclusion zones

based on non-sighting of the satellite from the station have been ascertained; field-of-view

limitations of the RF Attitude Sensor are incorporated in the error program° Computer

runs will next be made to evaluate the accuracy of vehicle attitude determination.

2.4.4.3 Development Tests

2.4.4.3.1 Stripline Components

As part of the preliminary design study on the RF Attitude Sensor, a number of tests were

conducted on microwave stripline components. 1 Temperature tests were made on a 6 Gc/s

rat-race (hybrid) to determine the differential phase shift between the two signal paths in

the rat-race. Over a range of -10°C to 60oc, no detectable change occurred within the

precision of the measurement, which was 0. 72 degree at 6 Gc/s.

The power split and isolation of the rat-race was also measured at 6 Gc/s. The power

split for any of the possible modes of connection was -3.0 + 0.1 db, and the minimum

isolation of the decoupled arms was -26 db.

2.4.4.3.2 Boom Interference Effects

2.4.4.3.2.1 Preliminary Model with Flat Ground Plane

To investigate the interference effects from the gravity gradient stabilization booms,

measurements were made on a preliminary model as shown in Figure 2.4-2. The model

consisted of two spiral antennas mounted on a flat ground plane. The booms were 1/2 inch
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Figure 2.4-2. Ground Plane Antenna Model for Boom Interference Evaluation 
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diameter aluminum tubes; both 3-foot and 6-foot boom lengths were used. The spacing

between the exit points from the ground plane was variable, as was the angle of the booms

with regard to the boresight axis. First, reference sum and difference patterns were

taken without booms. It was found that the spirals excited currents in the ground plane with

the result that both sum and difference patterns showed an interference ripple near the

boresight axis. Attempts were made to eliminate this disturbing effect by shielding the

spirals from the ground plane and by using absorbing material on the outer portions of the

ground plane failed. Since the prime objective of this test was to determine the boom inter-

ference effects this approach was abandoned. While it is felt that this ground-plane problem

can be overcome in the actual system by proper design of the antennas and their own re-

flecting plane, the result does point up the need for careful integration of the RF Attitude

Sensor into the vehicle structure.

2.4.4.3.2.2 Preliminary Model Without Ground Plane

In view of the above difficultieswith the flat ground plane itwas decided to eliminate the

ground plane altogether and support the booms from a wooden beam. The configuration

is shown in Figure 2.4-3. Since boom effects were known to be present, a larger spacing

between the boom attaching points was selected (24 inches). Again reference patterns

without booms were measured, this time with good success as shown in Figures 2.4-4

thru 2.4-5. Then patterns with the 6-foot long booms were measured, with the boom angle

varying from 0° to 90o. All patterns were measured in a plane containing the two booms.

Patterns were measured with both horizontal (parallel to booms) and vertical (orthogonal-to-

booms) polarization. The boom interference is more pronounced for horizontal polarization.

Typical patterns are shown in Figures 2.4-6 thru 2.4-11. As expected, the interference is

larger for small boom angles.

There was no marked difference in results between booms of 3-foot and 6-foot lengths.

An accurate extrapolation from booms of these short lengths to full-length booms is, of

course, not possible.

The effect of this boom interference on the angular measurement accuracy of the RF

Attitude Sensor will depend on the type of phase-measuring method as well as upon the prox-

imity of the sensor to the booms. This effect remains to be evaluated.

2.4.5 TV Camera Subsystem

The Television Camera Subsystem will consist of a small transistorized vidicon camera with

a wide-angle lens on an interconnected electronics package° The video output will have a

baseband of 0 to 8 mc and will modulate a voltage controlled oscillator in one of the De

HavillandAircraftCorporation communication transponders. The camera wil] view a target

at the end of each of the earth directed gravity gradient booms. With the targets approxi-

mately 100 feet from the camera, the earth also falls within the 48 ° by 64° field of view

under normally stabilized orbital conditions. On the 6000-mile orbit flight, a second TV

camera will view the two gravity gradient booms normally pointing away from the earth.

After the spacecraft is inverted, the earth will be visible through this additional camera.
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Figure 2.4-3. Antenna Model Without Ground Plane
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Figure 2.4-4. RF Attitude Sensor Antenna Pattern No. 1
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Figure 2.4-5. RF Attitude Sensor Antenna Pattern No. 2
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SUN PATTERN

FREQ. : - 6GC
POL. : - HORIZONTAL

BOOM ANGLE: - a=O •

Figure 2.4-6. RF Attitude Sensor Antenna Pattern No. 3
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Figure 2.4-7. RF Attitude Sensor Antenna Pattern No. 4
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Figure 2.4-8. RF AttitudeSensor Antenna Pattern No. 5
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Figure 2.4-9. RF Attitude Sensor Antenna Pattern No. 6
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Figure 2.4-10. RF Attitude Sensor Antenna Pattern No. 7
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DIFF. PATTERN

FREQ. : - 6GC
POL. " -HORIZONTAL

BOOM ANGLE "-(2=40 •

Figure 2.4-II. RF Attitude Sensor Antenna Pattern No. 8
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2.4.5.1 Design and Analysis

An analysis was made of the temperature extremes expected for the TV Camera Subsystem

(TVCS) during a mission. Three locations were considered, namely: the TVCS Electronic

Control Unit; the TVCS Camera Unit case and the TVCS Camera Unit Optics. The most

extreme temperatures will be experienced by the TVCS Camera Unit Optics for which tem-

peratures between 0 and 170°F are expected.

An estimate of TVCS life was made based upon data supplied in the vendor's proposal and

use of a 20,000 hour heater in the vidicon image tube as the limiting component part. A

reliability of 75% for three years with a 16% duty factor was calculated. This duty factor

represents approximately 60 minutes of TVCS operation per orbit for the medium altitude

flight.

The telemetry channels useful for the TVCS status were defined. The original list of 16 was

divided into three groups for priority proposes. The least group of three is considered

essential and consists of

1. Vidicon Filament Current

2. Vidicon Faceplate Temperature

3. Vidicon Target Voltage

The stabilization booms have been located on the vehicle in such a way as to require the TVCS

to be aligned in a position that is skewed both to the vehicle axes and to the boom axes. This

alignment is considered to be optimum and is a compromise between changing the TVCS

field of view with degraded accuracy as a penalty and the restricting maximum boom angle

with reduced scope of experiments as the penalty.

2.4.5.2 Resolution and Accuracy

At the Co Contractors Interface Meeting at NASA/GSFC on 30 July 1964, the General Electric

Spacecraft Department was informed that the video bandwidth of the TV pictures received

at the ground station would be limited to 5 mc, and was directed to study the effects of

this reduction from 8 to 5 mc on the resolution and accuracy of the TV Camera Subsystem.

This study is presented below.

The available resolution and accuracy of the TV Camera Subsystem are calculated on the

assumption that optics and scan voltage fluctuations are not the limiting factors but vidicon

retina, raster and scan beam are. Of particular interest is the degradation of accuracy by

reducing video bandwidth from 8 to 5 mc. It is calculated that the accuracy of horizontal

readout is 2.8 and 3.7 inches for 8 and 5 mc bandwidths, respectively.

Limitations on resolution and accuracy are determined in a TV camera by the raster

characteristics (number of scan lines, aspect ratio, width of scan lines), by the stability of

beam deflection, blur circle of the optics, field of view of the optics, and brightness

characteristics of the scene. For this analysis, the optical and deflection circuit deficiencies

are assumed to be not limiting and are not specifically considered. The target brightness is
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assumedto be controllable to some extent and for this analysis it is assumed that target

brightness is adequate and not limiting. This assumption is not necessarily true in practice

and affects the target signal according to the following. The target signal shape and amplitude

(voltage versus time) might not be consistently related to target position° This condition

will occur for a change in lighting level of the target, change in aspect angle of the target

as viewed by the camera, change in background scene, and change in reflection properties

of the target. These sources of error can be minimized, but not eliminated° Appositvely,

a greater video bandwidth, by rendering greater detail, overcomes some of this difficulty.

For the present analysis it is assumed that target brightness is optimum.

Specifically, then, the resolution and accuracy as limited by the selected raster, available

electron beam characteristics, available vidicon retina characteristics and video bandwidth

are considered.

2.4.5.2.1 Bandwidth

The video bandwidth is determined from the d-c level up to the maximum frequency required,

so that numerically the video bandwidth is equal to the maximum frequency. The maximum

frequency is given by Fink 2 as

(w] mk f n 2 1 +

fmax = x 1
2 I+K- v

where

fmax = maximum frequency

w/h = aspect ratio (4:3)
m = ratio of horizontal to vertical resolution

f = frame rate (30 frames/sec)
n = total number of lines (525)

K h = horizontal velocity factor

K = vertical velocity factor
V

The ratio of horizontal to vertical resolution (m) can be adjusted by changing the video

bandwidth on the foLowing basis. The vertical resolution is determined by the number of

horizontal lines and how well points can be distinguished between one line and the adjacent

lines. In actual systems even a point source always subtends more than one line, so that

the maximum vertical resolution approaches line separation, and is something less than

this if the two points to be resolved are vertically stacked. On the other hand, the horizontal

resolution depends in the extreme on the ability to separate two adjacent points on the same

line. Here the signal level must drop between the maxima of two point source signals to

some value sufficiently low so as to make the two maxima evident. Hence, the more rapidly

this can be done (on a scan line) the better the resolution. Obviously, the smaller the time

interval uetween maxima, the shorter the period of video writing cycle and the higher the

upper video frequency required.
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The utilization factor (k) is a correction factor based upon the fact that scan lines are

discrete and separated. Some signal elements of the image on the camera tube retina

will fall between the scan lines so that it can be presumed that some low contrast points

will be entirely lost and some high contrast points will be rendered with lower contrast.

The effect this phenomenon has upon resolution is accounted for by the utilization factor.

Fink indicates utilization factor ranges from 0.6 to 0.95. Since the target is being designed

to have good contrast most of the time a high utilization factor is reasonable. It is important

to recognize that use of a high utilization factor implies that the target subtends an angle

greater than one resolution element and is of high contrast. At this time this is the design

intention and requires that the target be six inches in diameter and be two-toned so as to

realize high contrast against either sun-illuminated earth or space background.

The velocity factors (K h and K v) are the respective ratios of writing velocity to flyback

velocity for the horizontal and vertical, respectively. The raster parameters determine

the vertical flyback velocity and KV has a value between 11 and 13. A value of 12 is

assumed here -- the actual value is determined in the circuitry by the width of the vertical

sync pulse. The horizontal flyback time, determined in the circuitry by the width of the

horizontal sync pulse, determines the value of K h. If 87.5% of the horizontal line period is

used for video signals, Kh has a value of 7.

Solving now for fmax, leaving m unspecified it is found that

Thus, if f
max

fmax -- 5.24 m (mc)

is limited to 5.00 mc, m must have a value of 0 955.

2.4.5.2.2 Resolution

With standard sweep rates each line is scanned in 63.5 microseconds. Assuming 87.5% of

the time is utilized and the width of the field is 64 degrees, there are 1.15 degrees scanned

per microsecond. A 5 mc frequency has a period of 0.2 microseconds and can thus resolve

points that far apart in scan time. Hence, the available horizontal resolution (unlimited by

other factors such as optics) is 0.23 degree. At 100 feet, this angle amounts to 4.81 inches.

In the vertical direction the number of used scan lines in the picture height is determined

from Kv to be 92.3%. There are 525 total scan line intervals available and thus 485 are

used. Each line, if lines are equally spaced, then subtends 48/485 which is 0. 0989 degree.

Signals on adjacent lines cannot be resolved, but signals on alternate lines may possibly be

resolved. Under such conditions the resolution amounts to 4.14 inches at 100 feet.

2.4.5.2.3 Accuracy

While the resolution of the TVCS is most important when the boom target is viewed against

the earth as background, there can be considerable operating time when the boom target is

viewed against a space background where the resolution is secondary. In all events, the

exact location of the target in the scene is the desired datum and the tolerance associated

with the location is determined by the accuracy. It is, therefore, important to assess the

effect of bandwidth upon accuracy.
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A technique known as aperture correction is available to reduce the effects of bean spot I

Q

size. ]=_ythis technique the high frequency response of the video amplifier is boosted

without a net change in phase shift. The effect is to electronically compensate for beam E

spot size by a factor of perhaps two. The net inaccuracy due to beam spot size can thus be

reduced by this technique to 0. 064 degree. Then with aperture correction, the accuracy in

becomes 0. 179 degree. This amounts to 3.7 inches at 100 feet. 1

If, on the other hand, bandwidth were maintained at 8 mc instead of 5 mc, position un-

certainty would be 0.072 degree and total inaccuracy would be 0. 136 degree. This amounts 1

to 2.8 inches at 100 feet.

In the vertical direction the location of a small source can probably be estimated to within I

one line. That is, it can be determined that the center of an imaged source lies on one

line or another. Again this is based upon the image occupying more than one line, viz.,

three more lines. The source can then be located to within 48 degrees/485 active lines, 1

which is 0. 0989 degree. This amounts to approximately 2.1 inches at 100 feet.
I

2.4.5.3 Limitations of the TVCS Due to Orbital Illuminatio_ I

The primary function ol me i vu_ l_ _,, ._L_ L:= b=:_ 7._,_,_n tn the a-ravlty gradient

- - - ...... _+_,,,_ _h_ make hi a difficult roblem are basically_._ ............... _ .... t s p 1

geometrical and optical. Referring to Figure 2.4-12, the 6000-mile orm_ m _L=o= .....

by the outer circle and the earth by the smaller circle. The rectangles A, B, C, D represent

the ATS at four orbital positions. Position C is in earth shadow. If the boom ends are re-

flecting discs, it should be appreciated that the TV camera, being located at the apex of

the booms, will be looking at the sunlit side of both boom ends at and near position A only.

At positions B and D the wrong side of one of the booms is illuminated by sunlight.

Upon further analysis of this situation the following conditions are seen to apply for the

boom angle at maximum (a= 62 degrees).

l.

.

.

Neither boom end is front illuminated for an orbital angle of 118 degrees centered
about position C.

Only one boom end is front illuminated for two orbital regions, each of which is
62 degrees of orbit. Total angle of single boom end illumination is 124 degrees.

Both boom ends are front illuminated for an orbital angle of 118 degrees centered
about position A.

If the boom angle is minimum (0= 22 degrees) the three angles are 158,

respectively.

44 and 158 degrees,

While the exact times for reading out boom position have not yet been defined, it appears

that as originally planned the TVCS would not give the total boom information more than

33% to 44% of each orbit, depending upon boom angle.

This usuage level is further reduced if one considers the fact that the boom end target

will not be discernable in an edge-on aspect but will disappear from the TVCS at some

shallow aspect angle dependent upon the target diameter and reflection properties.
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Starting with some assumptions about the target and the camera. It is assumed that:

1. The fiduciary marks on the camera tube retina can be accurately determined with
respect to the electronic time base.

2. The electronic time base is perfectly linear and stable.

3. Neglecting all other influences on accuracy not associated with the raster generation
and bandwidth.

The accuracy now becomes a matter of how well a target can be measured with respect to

the fiduciary marks when the target representation by the video circuits is dependent upon

raster and bandwidth. In theory, readout can be accomplished by making measurements on

an "A" scope presentation. In this arrangement the horizontal axis represents time from

line start, and the vertical axis represents voltage amplitude of the video signal. The

signals will have sloping leading and trailing edges as determined principally by the available

rise time of the electronics. The rise time of the electronics is directly expressible in

terms of bandwidth, once an amplitude characteristic shape is determined. Assuming a

simple relationship, the shortest signal pulse would be one that is as long in time as half the

period of the maximum frequency.

However, in practice, a bright point source of signal imaged on the vidicon retina spreads

out radially over about 5 resolution elements, so that the signal pulse generated electronically

is about five times this value. Then,

5
T

min a fmax

With a 5 mc bandwidth, ?rain is 0. 5 microseconds. The accuracy of readout now depends

upon how accurately the time interval can be measured from a reference amplitude on the

fiduciary signal to a reference amplitude on the target signal. It is now assumed that the

fiduciary signal is well enough defined so as to serve its intended purpose. It is estimated

that a trained observer could read signal position on the "A" scope to one-fifth of a pulse

width. Best accuracy of readout then becomes 0.1 microseconds. Since it has already

been determined that the scan rate is 1.15 degrees per microsecond, the accuracy becomes

0. 115 degree, if the scan beam has infinitely small diameter.

However, the electron scan beam has a finite diameter that can be readily determined.

If a vidicon has a rated resolution of 1000 TV lines per inch (and is so operated), then in

scanning the 64-degree width in a one-half inch wide raster on the tube retina, 500 lines

can be distinguished. If it is assumed that the lines are equally spaced and that a line width

equals a line spacing, then a line has a width of one mil. Consequently, the limiting beam

spot size for 1000 TV lines/inch must also be one mil. Since 128 deg/inch are scanned by

the beam, a one mil beam diameter means 0. 128 degree is the diameter of the scan beam.

Hence, the total error contributing to inaccuracy is 0. 115 degree pulse position uncertainty

plus 0. 128 degree beam width uncertainty, which is 0. 243 degree. This amounts to 5.1

inches at 100 feet.
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A techniqueknownasaperture correction is available to reducethe effects of beanspot
size. l_ythis techniquethehigh frequencyresponseof the video amplifier is boosted
without a net changein phaseshift. The effect is to electronically compensatefor beam
spot size by a factor of perhapstwo. Thenet inaccuracydueto beamspot size can thus be
reducedby this techniqueto 0.064degree. Thenwith aperture correction, the accuracy
becomes0. 179degree. This amountsto 3.7 inchesat 100feet.

If, on the other hand, bandwidthwere maintainedat 8 mc insteadof 5 mc, position un-
certainty wouldbe 0.072 degreeandtotal inaccuracywouldbe0. 136degree° This amounts
to 2.8 inchesat 100feet.

In the vertical direction the location of a small source canprobably beestimated to within
oneline. That is, it canbe determinedthat the center of an imagedsource lies onone
line or another. Againthis is baseduponthe image occupyingmore thanone line, viz.,
three more lines. Thesource can thenbe locatedto within 48degrees/485active lines,
which is 0.0989degree. This amountsto approximately 2.1 inchesat 100feet.

2.4.5.3 Limitations of the TVCS Due to Orbital Illumination

The primary function of the TVCS is to relay the boom position to the gravity gradient

stabilization analysts. The conditions that make this a difficult problem are basically

geometrical and optical. Referring to Figure 2.4-12, the 6000-mile orbit is represented

by the outer circle and the earth by the smaller circle. The rectangles A, B, C, D represent

the ATS at four orbital positions. Position C is in earth shadow. If the boom ends are re-

flecting discs, it should be appreciated that the TV camera, being located at the apex of

the booms, will be looking at the sunlit side of both boom ends at and near position A only.

At positions B and D the wrong side of one of the booms is illuminated by sunlight.

Upon further analysis of this situation the following conditions are seen to apply for the

boom angle at maximum (a= 62 degrees).

.

¢

Neither boom end is front illuminated for an orbital angle of 118 degrees centered
about position C.

Only one boom end is front illuminated for two orbital regions, each of which is
62 degrees of orbit. Total angle of single boom end illumination is 124 degrees.

Both boom ends are front illuminated for an orbital angle of 118 degrees centered
about position A.

If the boom angle is minimum (_= 22 degrees) the three angles are 158,

respectively.

44 and 158 degrees,

While the exact times for reading out boom position have not yet been defined, it appears

that as originally planned the TVCS would not give the total boom information more than

33% to 44q, of each orbit, depending upon boom angle.

This usuage level is further reduced if one considers the fact that the boom end target

will not be discernable in an edge-on aspect but will disappear from the TVCS at some

shallow aspect angle dependent upon the target diameter and reflection properties.
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Furthermore, neither opaque boom target is illuminated near the orbital region of the

earth's shadow -- a region that is well suited to thermal bending studies.

For these reasons a successful design is dependent upon what times with relation to

orbital position it is required to read-out the boom end location, and exactly how the

boom end target is designed.

There is also a consideration of how well the TVCS can determine boom properties. It has

been assumed that the early decision to read boom end position only is still dominant.

However, there may be some advantage to being able to see the boom itself and determine

its shape and plane of bending. If so, there are considerations of boom illumination that

should not be overlooked. Thus, in addition to the orbital restrictions mentioned above,

there is also a requirement for high reflection from the boom. Since its diameter is so

small, beyond 22 feet from the TV camera its diameter is less than a resolution element.

There are two other factors that bear mention. One is that the camera cannot operate with

the sun in the field of view. The other is that there will be times when the earth will occupy

the background of the TV scene so that the boom end will appear superimposed on the earth.

For the most part, the boom end targets will be illuminated by the sun from behind when-

ever the sun would appear in the field of view. There will be times, however, when the

earth will appear illuminated and the boom end targets will appear within the earth disc,

such as position A when the boom angle is less than 40 degrees. Under these conditions,

the sunlit boom end must be resolved against the sunlit earth. When this happens, the

reflected light from the boom end may be greater, equal to, or less than the reflected

light from the earth around it, depending upon sun angles to earth and boom end, and the

reflection factors of the earth (cloud, land feature, ocean) and of the boom end. It will be

impossible to maintain a fixed contrast between boom end and earth background. Target

contrast under these conditions should be optimized. This can best be done after it is known

when in orbital time the TVCS is expected to read out boom position. The TVCS cannot

discern a very low contrast target.

Up to the present the design options for the boom end targets have been based upon con-

siderations of making the targets visible for a maximum part of the orbit. The options

open to the design are limited to the following general approaches in order to maximize

the fraction of an orbit during which the TVCS can be used.

2o4.5.3.1 Use of Two-Toned Target

This approach was mentioned in a Hughes Aircraft document. It offers two apparent

brightnesses to the boom end in some kind of pattern; for example, a dull outer ring and an

inner bright disc. Against a bright (earth) background the target would appear as a black

ring; against a black (sky) background it would appear as a bright disc. To function, the

target ring diameter would have to be large enough so that the ring could be resolved against

a bright earth; and the target disc would have to be bright enough (a function of diameter

and reflection factor) to be seen against the sky background. Targets could be seen only

when front-illuminated.
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2.4.5.3.2 Use of Translucent Target

This approach would have part of the target translucent to light so that it would have some

forward brightness when illuminated from both ends. Since the boom end is weighted, it is

likely that the center of the target should remain opaque and the outer edge translucent° To

be of benefit against the sunlit earth, however, the outer ring should appear dark against

the earth background. Now this would require special properties of the target ring, since

it must transmit light from the rear and be highly absorptive to light from the front. This

may be done, it it thought, provided very high contrast is not a necessity.

2.4.5.3.3 Use of Solid Target

This approach would require the boom end target to be, for example, a spherical cup so

that it would present a reasonable cross section to the camera over more than 180 degrees

of sun angle. The mechanical considerations before boom deployment may dictate what

can be done on this approach, since depth of target is im.olved.

It should be mentioned that at the start of the program, the target diameter was limited to

6 inches maximum. This establishes the maximum reflective area, so that maintaining

sufficient brightness for all sun angles will severely limit dividing the target into regions

or patterns of different contrast. This is so since dividing a target into a low and high

contrast area against a given background effectively reduces its brightness in proportion

to the percent of low contrast area.

2.4.5.3.4 Use of Active Target

One other approach was considered briefly. It was to put a source of illumination in the

target so that its contrast could be changed b:,' turning the illumination off or on. This

does not appear feasible at this time unless some manner of wiring the boom end can be

allowed.

In addition to designing the light contrast for the targets, the problem of camera optical

setting must be resolved. It has been determined that in order to enable a maximum accur-

acy of readout, a reticle will be placed on the vidicon image retina. By this means, a grid

overlay is effectively available for reading out boom position from each TV picture. In

order to make this reticle appear on each picture, the retina-target voltage of the vidicon

must be set for optimum reticle reproduction. By doing this, the brightness level of the

scene imaged by the optics is effectively preset and the image brightness must be set by

the lens stop. At the present time there is no provision in the design for changing the lens

stop as a function of background (earth or sky). It may be found necessary to change lens

opening as a function of background and this will be resolved during the planned testing

phase with the engineering model of the TV camera.

2.4.5.4 Development Tests

An experimental measure of accuracy and resolution of a nominal 8 mc bandwidth vidicon

camera subsystem with aperture correction was made to give experimental support to the

resolution and readout accuracy study. Camera used was a GE Model TE-15 having 500
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non-interlaced lines, 30 frames persecond and using a 7735A vidicon. Tests results

referred to the 100-foot boom distance are, in brief: dot resolution 6 inches, bar resolu-

tion 1.6 inches, accuracy approximately one inch. (It should be noted that this system has

higher performance than the TVCS will have. )

Three simulated targets were made to serve as model targets for evaluating the lighting

conditions, target reflectance properties and target patterns for optimum boom perception

by the TVCS.

In a second test, a one-inch Shibaden TV Vidicon Camera was set up to look at scale models

of boom targets in order to obtain an indication of the kind of video signals to be processed

from the TV Camera Subsystem.

The Camera used had a one-inch vidicon Type DY2B and a 15 mm focal length, f/1.9 Cosmicar

lens. The camera was set up 20 feet from the model targets. Targets were 1.2-inch diam-

eter aluminum discs, giving a 5 to 1 scale. A 25:1 illumination level was used, making the

light level at the target 400 foot candles, as measured by a Weston Light meter Model 756.

By means of a resolution chart it was determined that the camera had approximately 350

lines resolution, corresponding to a bandwidth of slightly more than 4 megacycles.

The following significant data was obtained, and is based upon data scaled up to TVCS

conditions expected on the satellite:

1. With sunlight normal to boom target and camera line-of-sight normal to boom
target,a 7.2-inch diameter spot in a 14.4 inch diameter disc can be resolved.
The spot signal level is 30% of the peak signal level. The resolution of the spot
and the estimate of the signal level was determined from the top and bottom
traces of the photograph in Figure 2.4-13.

2. If the target diameter is reduced to 9.6 inches and the spot to 4.8 inches the
modulation is 8%.

3. The relative signal strength for other than normal sunlight and target normal to
camera are shown in Figures 2.4-14. It should be recognized that the angle
between camera line of sight and target normal will range from 5.5 ° to 31 °
as a function of scissor angle. Angle of sun light will change 360 ° per orbit.

4. For 60 ° boom angle the greatest allowable sun angle for a 2 to 1 signal-to-noise
ratio and a 6-inch plain target is approximately 51 °. The plain target has a ma-
chined aluminum surface so as to contain many rough reflecting grooves.

5. As a strictly laboratory experiment the target model having the inner darkened
disc was sprayed with Krylon No. 1310 dulling spray. With sun and camera
normal to target the modulation of the signal d_ue to the dark spot changed from
an estimated 1% without dulling material to 10% with it. The bright part of the
model target is a smooth machined finish. Addingthe dulling material gives it a
frosted appearance.

6. The optimum lens opening was determined to be f/2.8.

Further tests are planned to determine the effects of using a Xenon lamp which has a

spectral output more like the sun than the 500 watt flood lamp (tungsten) used in these

experiments. It is also recognized that the optimum target surface reflection material

has not yet been determined.
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Figure 2.4-13. Resolutionof Black Spotin Center of Illuminated Disc by
OscilloscopeTrace of the VideoSweepLine
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2.5 Reliability

An apportionment of the Advanced Technological Satellite Configuration was made to

determine the reliability goals applicable to each of its constituent components. An

arbitrary mission lifetime of > three years was selected as the reliability goal in order

to conform to the performance requirements shown in the Hughes Aircraft Company (HAC)

document SSD 4277B, dated June, 1964.

Table 2.5-1 summarizes the apportionment in respect to the duty cycle, reliability design

goal and the required Mean Time To Failure (_vITTF) for each component.
n

Based on the product of the component reliability values, i=II1 R i , the Configuration would

have an estimated reliability of. 55 for the three-year mission. These values have been

used as the design goals in each component specification.

2.5.1 Apportionment Factors

Four primary factors influenced the apportionment:

1. Data obtained from subcontractor responses to the RFQ

2. Criticality of each component to the mission objective

3. Short lifetime of the vidicon tube in the TV camera

4. Relative complexity and the design problems of the components.

Secondary factors involved in the reliability computations were:

1. The dampers are essentially redundant in that a failure of either one does not affect
the function of the other.

2. All of the five sensor components may not be used in the final configuration. At
most, three will be required, probably the solar aspect sensor, RF sensor and
the magnetometer. In turn, any two, out of the three, are necessary to establish
pointing accuracy.

3. The gravity gradient booms will be deployed and scissored a maximum of ten
operations in the mission.

4. Relays and driver circuits for power distribution will see a maximum of 3000
operations in the mission, except the motor controls.

5. The angle detector is not essential to the mission, being used solely for infor-
mation concerning boom position.

6. All components are functionally independent, except the power control unit.

7. The TV camera will have a maximum duty cycle of. 16 of the total mission hours.

8. All sensor components will have a maximum of 3000 on-off cycles and a duty
cycle of. 5 of the total mission hours.
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TABLE 2.5-1. ATSAPPORTIONMENT

RELIABILITY DESIGN 6000-MILE
COMPONENT DUTY CYCLE GOAL ORBIT VEHICLE

TV Camera

Solar Aspect Sensor

RF Sensor

Magnetometer

Power Control Unit

Gravity Gradient Rods

C° Passive Damper

.16

.50

.50

.50

.50

10 Op/Mission

1.00

• 75

• 80

• 80

• 80

• 95

• 95

> .90

• 91 (Redundant)

.55

15,000 Hrs

55,000 Hrs

55,000 Hrs

55,000 Hrs

Not Applicable

Not Applicable

65,000 Hrs Eacl_

2.5.2 Apportionment

2.5.2.1 TVCamera

As previously mentioned, the limiting item toward achieving a high reliability for the

Experimental Package is the vidicon tube in the TV camera. Using high reliability parts

and a duty cycle of 60 minutes operation per orbit, the estimated reliability is _ . 75 for

the three-year mission, if the vidicon tube selected for use in the component has an MTTF

of 20, 000 hours.

2.5.2.2 Sensor Components

The complexity (number of parts) of the Solar Aspect Sensor and the RF Sensor are approxi-

mately the same. Assuming the magnetometer to be of the same complexity gives an equiv-

alence of 1:1 among all three sensor components. Since, under worst case conditions, two

out of the three components are required for attitude determination, then the Binomial

Expression can be used to compute the survival probability of any two out of three equivalent

components:

n

P(Sln ) = Z (nx) px(1 - O)n-x
X=S

where P is the reliabilityof any one of thethree equivalent components•

Assigning a reliability of. 80 for each component, results in a probability of survival of

• 90 for any two out of the three components• This would require an MTTF of approx-

imately 55,000 hours at a 50% duty cycle for each component.

2.5.2.3 Power Distribution

Approximately 25 relays and 50 driver circuits will be used in this component• Most driver

circuits and relays will be operated a maximum of 3000 operations at approximately 50

milliseconds per operation, and will remain in a standby mode for the greater share of the

mission•

A reliability estimate based on this type of operation shows a reliability of. 95 can be

expected in the mission•
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2.5.2.4 Gravity Gradient Rods

The gravity gradient booms are one of the two components critical to the mission, because

the failure of this component will result in improper orientation of the spacecraft.

A reliability estimate was made based on 10 operations of the rods in a deployment, re-

traction or scissoring operation and the duration of the mission in a standby mode. The

estimate shows a probability of operation of. 99 for the 10 cycles and a standby reliability

of approximately. 67 during the three-year mission. It is reasonable to suppose that with

the selection of proper materials, processing, and manufacturing techniques, the standby

mode of failure (degradation due to environment) of the mechanical and electromechanical

parts can be reduced by an order of magnitude. This would result in an estimated reliability

of. 95 for the booms.

2.5o 2.5 Combination Passive Damper

This component, in conjunction with the gravity gradient booms, is most critical to the

mission, since it has an operational requirement for the full mission life to control oscil-

lation. Since two units are used, a back-up is provided in case of failure of any one unit,

so this component has true redundancy.

Each of the units must have an MTTF approximately 2 1/2 times the mission hours (26,000)

to attain a reasonable probability of survival. Therefore, based on each unit having an

MTTF of 65,000 hours the units in true redundancy, and neglecting the clutch; a reliability

of. 91 would be the design goal.

2.5.3 Parts

The "ATS Authorized Parts List" received from HAC does not encompass all part types which

may be required in certain equipments. Therefore, a policy has been adopted to use the

most reliable part available and suitable for each application.

For overall system consistency, this places priority on:

1. The use of Hughes High Reliability Part Specifications wherever applicable to the
engineering requirements

2. The use of GE "space qualified" high reliability parts

3. The use of contractor recommended high reliability parts.

All parts which are selected for use in equipment but which do not appear on the ATS parts

list will be qualified by tests consistent with the HAC Specifications.

With the decision to use HAC parts in all GE-SD components, an Approved Parts List,

490L106, was generated using the duplicate parts specified on the "ATS Authorized Parts

List" received from HAC. All available HAC part specifications were compiled and dis-

tributed to all subcontractors and in-house design personnel for use in their components.
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The distribution of applicablepart specificationsreferenced in 490L106 is not complete

since all specifications have notbeen received by GE-SD. The missing specifications were

verbally requested from the Technical Officer on September 24, 1964.

HAC is to supply GE-SD with a Qualification Status List for all parts on the authorized list,

since all parts with an "X" preceding the drawing number are not yet qualified.

Specification SVS 7325, entitled, "Standard Parts, Materials and Processes, Use of,"

was issued and defines part usage, intermittent life tests and extended power ageing for the

engineering models, prototype and flight unit components.

Parts appearing on the ATS "APL" are being analyzed for their susceptibility to the

radiation environments specified for the medium altitude orbit (6000-mile orbit) and the

synchronous orbit (24-hour orbit).

2.5.4 Standards

All component specifications and work statements sent to the subcontractors have been

reviewed to assure compliance with existing Military, GE-SD, or NASA specifications

relating to processing techniques, inspection procedures, etc.

An "Approved Materials and Processes for ATS" (Document 490L107), has been issued and

transmitted to all subcontractors for application on all equipment designs.
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2.6 Quality Control Activity

Technical support was provided to the design engineering effort to establish the require-

ments for test equipment and facilities. Support was also furnished in providing the

Quality Control requirements for the component work statements and specifications.
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2.7 Manufacturing

Close liaison has been established between Design Engineering and Manufacturing

Engineering to identify the required manufacturing processes and formalize plans for

availability by the time drawings are released.

2.7.1 Process Development

Work was initiated to establish the required cleaning procedures to control against surface

magnetic particle contamination of the combination passive damper parts during the

manufacturing cycle. The work to date has been in establishing test procedures as

recommended by Design Engineering to measure the effectiveness of cleaning methods to

be evaluated. Test samples of aluminum will be contaminated with magnetic particles

known to exist in the shop area, and tests will be conducted before and after cleaning.

2.7.2 Mechanical Interface

Eighteen mechanical interfaces have been identified, and plans have been formalized to

provide appropriate tooling to control each of these interfaces.

2.7.3 Make or Buy Structure

One change has been made in the Make or Buy structure; the RF Attitude Sensor is now a

"make" item. The sensor will be produced by the Radio Guidance Operation of the General

Electric Company, Utica, New York.
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SECTION3. NEWTECHNOLOGIES

There are nonewtechnologiesto be reportedthis quarter° Efforts to monitor the
analytical anddevelopmentalareas will continue,andnewtechnologieswill be reported
as they are developed°
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SECTION 5. GLOSSARY

The following is a list of abbreviations and definitions for terms used throughout this

report:

CPD

Crab Angle

EC

GE-SD

HAC

LOFF

MAGGE

MTFF

RFAS

SAGGE

STEM

SVA Fixture

Thermal Twang

TR

TVCS

Combination Passive Damper

Out-of-orbit angle flight caused by changes in X-rod angle

Eddy Current

General Electric Company Spacecraft Department

Hughes Aircraft Company

Low Order Force Fixture

Medium Altitude Gravity Gradient Experiment (6000-mile orbit
flight)

Mean Time To Failure

RF Attitude Sensor

Synchronous Altitude Gravity Gradient Experiment
(240 hour orbit flight)

Storable Tubular Extendable Member

Shock and Vibration Attachment Fixture

Sudden thermal bending which the booms will experience in
passing from a region of total eclipse into a region of continuous
sunlight or vice versa

Torssional Restraint

TV Camera Subsystem
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APPENDIX A

1. Summary

The digital output of the ATS Solar Aspect Sensor indicates the illuminated detector

number and the inclination of two planes. These planes are each orthogonal to the de-

tector eyes and their intersection determines the vector from the detector to the sun.

This information, two angular values, must first be brought into a form which is easily

transformed and then the transformation operation to vehicle coordinates can be per-

formed.

The procedure is detailed in this appendix and an expression for the vehicle coordinates

corresponding to a unit vector to the sun is derived in terms of the two angles that are

indicated by the instrument. Combination of this information with the known unit vector

to the sun in orbital coordinates yields pitch, roll and yaw angles, the expressions for

which are also derived.

2. Derivation of Cartesian Coordinate Values in Terms of the Detector Angles

Figure A-1 shows a schematic top view of a solar detector and the placement of the

coordinate system of Figure A-2.

EYE 1

t
--:

0

Figure A-1. Schematic Top View of Solar Detector
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Figure A-2. Unit Vector R to the Sun
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A unit vector R to the sun is shown in Figure A-2 in the coordinate system XD, YD' ZD

and the spherical coordinate system r, 8, ¢. Eye 1 of the detector measures angle A

and Eye 2 measures angle B.

The cartesian coordinates of vector R can then be described in two ways:

X D = R 1 cos A

YD = R2 cos B

Z D = R 1 sinA =R 2sinB

X D = sin 8cos ¢

YD = sin e sin _

Z D = cos O

From Equations (1) and (2), R 1 and R 2 can be found in terms of A and B.

R 1
1

sin A _1 + cot2A + cot2B

(I)

(2)

R 2
1

sin B _I + cot2A + cot2B

Then the t cartesian coordinates of the detector_in terms of the detector angles A and B
/

are:

X D = -_
_sin2B + sin2A cos2B

sin A cns B (3)
YD =qsin2B + sin2A cos2B

ZD =_sin2B + sin2A cos2B

3. Transformation to Vehicle Coordinates

Positioning of the detectors (D 1 through D5) with respect to the vehicle axes is shown in

Figure A-3. X 1 is the vehicle yaw axis, Y1 the roll axis, and Z 1 the pitch axis.
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Figure A-3. Position of Detectors D1 through D 5 with Respect to the Vehicle Axes
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Figures A-4 and A-5 indicate the detector axes with respect to the vehicle axes.

ZD 3

X

D 3

\

YD 3

\
\
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X 1
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ZD 2

YD 2

Y1

X

Figure A-4. Detector Axes with Respect to the Vehicle Axes (Top View)
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Figure A-5. Detector Axes with Respect to the Vehicle Axes (Side View)
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The coordinate transformations are:

Y1 = 0 _ YD1

Z 0 _,ZD11

Y1 = 0 _ YD2

Z 0 _kZD2 /

Y1 =

Z
3

sin 30 co:301 /XD3 _

cos 30 -sin 30/ _ZD3 /

(4)

: 0
Z 1 -cos 30

cos_0Vxo.\
__ _o/\z., /

(x 15DY1 = 0 - _YD_

Z 0 _ZD=

The subscripts in Equations (4) refer to the detector number which will be indicated by

the sensor output.

4. Determination of Vehicle Attitude

It is assumed that the direction to the sun in orbital coordinates is known, e.g., a

c°lumnmatrix (i) = S whose components are orthonormal is given.

Footnote 1 gives the transformation from orbital coordinates to vehicle coordilmtes as:

ix1)(elle12Y1 = e21 e22 e23 }

Z 1 e31 e32 e33/

1. "Final Report for Feasibility Study of Passively Oriented Lenticular Satellites,"
General Electric Missile and Space Division, date 21 June 1963 to 30 August 1963.

(5}
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where

and

ell = cos _pCOS e r

el2 = sin 0pCOS e r

el3 = - sin O r

e21 = cos

e22 = cos

e23 = cos

e31 = sin

e32 = sin

e33 = cos

0p sin e r sin ey - sin Op cos 0y

0p cos _y + sin Op sin Or sin _y

_r sin 0y

0p sin 0y + cos Op sin Or cos _y

_p sin Or cos Oy - cos _p sin ey

0 r cos ey

0 r = roll angle

0p = pitch angle

ey = yaw angle

Letting

(xl)Y1

Z 1

= V

Equation (5) can be written as

V = ES

E = VS +Then

since the components of S are orthonormal.

(eee (X/re21 e22 e23 _ = Y1

e31 e32 e33/ Z 1

ell e22 e13_ /Xlr XlP Xlq_e21 e22 e23J =_Y1 r Y1 p Y1 q)

e31 e32 e33/ \Zlr ZlP Zlq/

From Equations (6),

e = tan-1
P

o r' ep, Oy can be found in terms of the elements of E.

(6)

(7)

(8)

(9)

e r = sin -1 (-el3)

0y = tan -1 \e33 /

(10)
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Equations (10) are double-valued functions, but the assumption of cos Or > 0 removes

the ambiguity. The signs of ell , el2 , e23 and e33 in Equation (7) then indicate the

signs of sin Sp, cos 0p, sin 8y and cos 8y and so the angles are uniquely determined.

Cos Or > 0 places Or in the first and fourth quadrant and implies oscillations of less

than 90 ° around zero which is certainly a reasonable assumption.
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